尼姆博弈:有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况与二进制有着很大的关系,我们用(a,b,c)来表示某种局势,那么(0,0,0)必然为奇异局势,最后一个面对这个局势的必败。(0,n,n)也是种奇异局势。因为如果对手在其中一堆取m个石子(m<=n),那么你也可以在另外一堆中取m个,他取几个你就取几个,到最后有一堆变为0的时候,你再取完另一堆胜利。
直接说结论吧:
对于任意的奇异局势(a,b,c),都有a^b^c=0。(^为异或运算)。
对于任意的非奇异局势(a,b,c),假设a<b<c,将它变为奇异局势的方法是:将c变成a^b。
原理:因为a^a=0,所以a^b^c=a^b^(a^b)=(a^a)^(b^b)=0,所以只需将c-(a^b)即可。
例1:有个非奇异局势(14,21,39),因为14^21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。
例2:我们来实际进行一盘比赛看看:
甲:(7,8,9)->(1,8,9)奇异局势
乙:(1,8,9)->(1,8,4)
甲:(1,8,4)->(1,5,4)奇异局势
乙:(1,5,4)->(1,4,4)
甲:(1,4,4)->(0,4,4)奇异局势
乙:(0,4,4)->(