取石子游戏之尼姆博弈

尼姆博弈是一种两人轮流取石子的游戏,与二进制有密切关系。奇异局势(a^b^c=0)导致必败,通过异或运算可以将非奇异局势转变为奇异。例如(14,21,39)变为(14,21,27)。游戏策略包括寻找合法移动使局面满足a1^a2^...^an=0,以及利用SG函数判断必胜策略。" 117890672,10293674,JS实现微信支付弹窗效果,"['HTML', 'CSS', 'JavaScript', '前端开发', '支付弹窗']
摘要由CSDN通过智能技术生成

尼姆博弈:有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜

这种情况与二进制有着很大的关系,我们用(a,b,c)来表示某种局势,那么(0,0,0)必然为奇异局势,最后一个面对这个局势的必败。(0,n,n)也是种奇异局势。因为如果对手在其中一堆取m个石子(m<=n),那么你也可以在另外一堆中取m个,他取几个你就取几个,到最后有一堆变为0的时候,你再取完另一堆胜利。

直接说结论吧:

对于任意的奇异局势(a,b,c),都有a^b^c=0。(^为异或运算)

对于任意的非奇异局势(a,b,c),假设a<b<c,将它变为奇异局势的方法是:将c变成a^b。

原理:因为a^a=0,所以a^b^c=a^b^(a^b)=(a^a)^(b^b)=0,所以只需将c-(a^b)即可。

例1:有个非奇异局势(14,21,39),因为14^21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。

例2:我们来实际进行一盘比赛看看:
        甲:(7,8,9)->(1,8,9)奇异局势
        乙:(1,8,9)->(1,8,4)
        甲:(1,8,4)->(1,5,4)奇异局势
        乙:(1,5,4)->(1,4,4)
        甲:(1,4,4)->(0,4,4)奇异局势
        乙:(0,4,4)->(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值