上一篇讲了,电磁波信号有2个特征:幅度和相位。
相位就是时间。
复数所在的坐标系是 (x,y,t)坐标系。 但是问题是 这是3维坐标系,在平面上绘图不方便,需要右一定的空间想象力。
有没有二维的坐标系就可以直接表示 复数信号呢?
这里引入了复平面向量的概念。 (我觉得很神奇啊,前人直怎么想到的?)
一般用复向量 表达复数。以复数的乘除为例:这样表达的好处是简化运算。
实数的乘除: 本质是缩放。
复数的乘除: 在复平面上,2个复数相乘,幅度等于 缩放;相位旋转。
如下:Z1--》 z1*z2 (变换)
幅度:r1->r1*r2
相位: theta1-> theta1+theta2
具体计算过程如下:
总结: 复数信号用 二维坐标(x,y))的复向量表达, 而不用3维坐标的x,y,t表达。
这里可能有人质疑,t的信息是不是丢了?
实际上没有,