谱估计(一)信号的向量形式

写在前面

本人作为研一的新手小白,最近在接触毫米波雷达的DOA领域,看论文的各种高分辨估计算法不是很明白。像MUSIC大多是直接将算法的过程,对于其原理都是一笔带过,这对只学过信号与系统和数字信号处理的小白来说不是很友好。

于是打算从基础开始学起。文章主要是作为自己看教科书、论文和资料中整理的学习笔记,也欢迎各位共同学习和交流。如有错误欢迎批评指正!

频率向量

假设有一复指数信号s

对其从t'点开始采样,采样后得到序列x_{n}

采样点可以看成从t'时间开始的延时,对于单一的信号,频率固定,时间的延迟也可以等价于相位的延迟

 将上式用矩阵形式来表示

向量a即为我们定义的频率向量

频率向量a(f。)的意义:频率向量a(f。)是一个复正弦序列,其频率为f。

因此a( f 。)称为信号的频率向量,它反映了信号频率
 

以上为对单一频率信号的采样。若存在P个信号分量,则可看成是P个信号的叠加

 傅里叶变换的向量形式

熟悉了信号的向量表示,就可以将傅里叶变换也用向量形式来表示

上式可以简化为

其中,观测数据的向量为

频率向量为

从上式可知,傅里叶变换可以认为是观测数据向量x(t')与各个频率向量a(f)的内积。因为不同频率向量的长度(或范数)为定值,即

所以,傅里叶变换可以认为是观测数据向量x(t')在各个频率向量a(f)的投影(与内积仅差一常数l/√N乘积项)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林家老白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值