高斯混合模型

这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。

      与k-means一样,给定的训练样本是clip_image002,我们将隐含类别标签用clip_image004表示。与k-means的硬指定不同,我们首先认为clip_image004[1]是满足一定的概率分布的,这里我们认为满足多项式分布,clip_image006,其中clip_image008clip_image004[2]有k个值{1,…,k}可以选取。而且我们认为在给定clip_image004[3]后,clip_image010满足多值高斯分布,即clip_image012。由此可以得到联合分布clip_image014

      整个模型简单描述为对于每个样例clip_image010[1],我们先从k个类别中按多项式分布抽取一个clip_image016,然后根据clip_image016[1]所对应的k个多值高斯分布中的一个生成样例clip_image010[2],。整个过程称作混合高斯模型。注意的是这里的clip_image016[2]仍然是隐含随机变量。模型中还有三个变量clip_image018clip_image020。最大似然估计为clip_image022。对数化后如下:

      clip_image023

      这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的clip_image016[3],那么上式可以简化为:

      clip_image024

       这时候我们再来对clip_image018[1]clip_image020[1]进行求导得到:

      clip_image025

      clip_image027就是样本类别中clip_image029的比率。clip_image031是类别为j的样本特征均值,clip_image033是类别为j的样例的特征的协方差矩阵。

实际上,当知道clip_image016[4]后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。

      之前我们是假设给定了clip_image016[5],实际上clip_image016[6]是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:

循环下面步骤,直到收敛: {

      (E步)对于每一个i和j,计算

                  clip_image035

      (M步),更新参数:

                  clip_image036

}

      在E步中,我们将其他参数clip_image038看作常量,计算clip_image040的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,clip_image042值又不对了,需要重新计算,周而复始,直至收敛。

      clip_image042[1]的具体计算公式如下:

      clip_image043

      这个式子利用了贝叶斯公式。

      这里我们使用clip_image045代替了前面的clip_image047,由简单的0/1值变成了概率值。

      对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别clip_image040[1]是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。

      虽然之前再K-means中定性描述了EM的收敛性,仍然没有定量地给出,还有一般化EM的推导过程仍然没有给出。下一篇着重介绍这些内容。

上面提到的混合高斯模型的参数clip_image109clip_image111计算公式都是根据很多假定得出的,有些没有说明来由。为了简单,这里在M步只给出clip_image113clip_image115的推导方法。

E步很简单,按照一般EM公式得到:

      clip_image116

      简单解释就是每个样例i的隐含类别clip_image055[2]为j的概率可以通过后验概率计算得到。

      在M步中,我们需要在固定clip_image072[4]后最大化最大似然估计,也就是

      clip_image118

      这是将clip_image120的k种情况展开后的样子,未知参数clip_image122clip_image124

      固定clip_image126clip_image128,对clip_image130求导得

      clip_image131

      等于0时,得到

      clip_image132

      这就是我们之前模型中的clip_image115[1]的更新公式。

      然后推导clip_image126[1]的更新公式。看之前得到的

      clip_image133

      在clip_image113[1]clip_image115[2]确定后,分子上面的一串都是常数了,实际上需要优化的公式是:

      clip_image134

      需要知道的是,clip_image126[2]还需要满足一定的约束条件就是clip_image136

      这个优化问题我们很熟悉了,直接构造拉格朗日乘子。

      clip_image137

      还有一点就是clip_image139,但这一点会在得到的公式里自动满足。

      求导得,

      clip_image141

      等于0,得到

      clip_image142

      也就是说clip_image143再次使用clip_image136[1],得到

      clip_image144

      这样就神奇地得到了clip_image146

      那么就顺势得到M步中clip_image126[3]的更新公式:

      clip_image147

      clip_image111[1]的推导也类似,不过稍微复杂一些,毕竟是矩阵。结果在之前的混合高斯模型中已经给出。


转自:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值