目标跟踪数据集整理(二)--LaSOT


LaSOT:A High-quality Benchmark for Large-scale Single Object Tracking 2019

炫酷的官网页面,可以下载数据集、有相应的评测工具和其他tracker的结果

We have compiled a large-scale dataset by gathering 1400 sequences with 3.52 million frames form YouTube under Creative Commonns licence.
它是一个long-term tracking ,这个数据集有1400个视频序列,每个视频平均有2512帧,最短的视频也有1000帧,最长的包含11397帧。分为70个类别(真的很多了,一般只要二十左右,那会有更多的吗?答案是肯定的,GOT-10k),每个类别由二十个视频序列组成。每个视频序列包含不同的挑战,这些类别是从ImageNet的1000类中挑选出来的。那每一帧是怎么标注的呢?是人工标注,很小心的密集标注。更重要的是,它考虑了视觉外观和自然语言的联系,不仅标注了bbox而且增加了丰富的自然语言描述,旨在鼓励对于跟踪,结合视觉和自然语言特征的探索。这里提供1400个句子描述。那这些视频是怎么来的呢?从YouTube搜索的,5000中挑选了1400,但是这1400个视频也不能直接使用,因为有大量的无关内容,例如对于运动者的介绍,所以得过滤掉这些不相关的内容。
从下面可以看到它只有227G,比TrackingNet小很多。

LaSOT的一些属性、原则(也是它的贡献点),也是对现存在的问题的改进:
在这里插入图片描述

<think>好的,用户需要下载LaSOT数据集,但不知道具体怎么操作。首先,我得确认LaSOT数据集的官方渠道。根据之前的引用,用户提到引用[1]是来自Temple University的链接,指向一个工具包,可能数据集需要在那里获取。同时引用[2]提供了一个百度云链接,里面包含多个数据集,包括LaSOT。所以用户可能有两个途径:官方渠道或者百度云。 接下来,我需要验证这些链接是否有效。但用户提供的引用[1]链接是一个.zip文件,可能直接下载工具包,而数据集本身可能需要通过该工具包下载,或者需要注册。而百度云的链接可能存在,但需要确认提取码是否正确。不过用户给出的提取码是s6wz,可能需要检查是否正确,但用户的问题中可能已经信任这个来源。 另外,还要考虑用户是否可能访问不了百度云,或者需要更官方的下载方式。通常数据集官网会提供下载说明,可能需要填写表格或申请访问权限。因此,我应该建议用户首先尝试官方渠道,如果遇到困难,再使用百度云备份。 需要分步骤说明,先官方方法,再备用方法。同时提醒用户注意数据集的使用许可,确保符合研究目的。此外,要确认下载后的文件是否需要解压或安装,比如引用[1]的zip文件可能需要解压后使用工具包来下载数据集。或者,是否直接包含数据集。 可能用户对LaSOT数据集不熟悉,需要简要介绍,比如它是用于目标跟踪的大型数据集,包含大量视频序列。最后,确保回答清晰,步骤明确,避免用户混淆。</think>### 如何下载 LaSOT 数据集? #### 方法 1:通过官方渠道下载 1. **访问 LaSOT 官网** LaSOT 数据集由 Temple University 维护,可通过其官方页面获取下载链接和工具包。访问地址:[LaSOT 官网](https://cis.temple.edu/lasot/)。 2. **下载评估工具包** 官方提供的评估工具包中包含数据集下载说明和接口。点击下载链接[^1](`https://cis.temple.edu/lasot/toolkit/LaSOT_Evaluation_Toolkit.zip`),解压后按照文档指引操作。 3. **填写申请表格(如需)** 部分数据集需提交研究用途申请,官网会提供联系邮箱或在线表格。 #### 方法 2:通过百度云备份下载 若官方渠道访问受限,可通过以下百度云链接下载(包含 LaSOT 及其他常用跟踪数据集): - **链接**:https://pan.baidu.com/s/1ihxER2B68Ai3b3AklLo_xA - **提取码**:s6wz [^2] 下载后解压文件即可使用。 --- #### 注意事项 1. **数据集用途** LaSOT 主要用于学术研究(如目标跟踪算法评估),需遵守其许可协议。 2. **文件验证** 下载后建议通过 MD5 校验或官方提供的校验工具确认文件完整性。 3. **备用资源** 若链接失效,可搜索 GitHub 或学术论坛(如 Papers with Code)获取最新镜像资源。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值