# Optimized contrast enhancement for real-time image and video dehazing

6 篇文章 0 订阅

【摘要】本文提出了一种针对含有雾的图像和视频快速、完善的去雾算法。观察发现有雾的图像普遍具有低对比度，我们通过增强对比度来修复图像。然后多度的增强这些低对比度会截断像素值以及导致信息丢失。因此，我们引入一个包含对比项以及信息丢失项的损失函数。通过最小化损失函数，该算法不仅增强了对比度而且有效的保留了图像信息。另外，我们将图片去雾算法扩展到视频去雾。我们通过计算透射率的相关性减少对视频去雾时的闪烁程度。实验证明该算法去雾的有效性以及快速地进行实时去雾。

# Hazing modeling

I(p)=t(p)J(p)+(1t(p)A)

t(p)[0,1]$t(p) \in [0, 1]$ 为反射光的传输率，由景物点与相机的距离决定 t(p)=epd(p) $t(p) = e^{-pd(p)}$ 。静态图片去雾算法框架如下：

Fig.1 Block diagram of the proposed static image dehazing algorithm.

# Static image dehazing

## Atmospheric light estimation

1. 我们将图片分为四个矩形区域。
2. 我们将每个区域的平均像素值减去该区域的标准差，得到该区域的得分score。
3. 将score最高的区域划分为四个小区域。
4. 重复2~3步骤，直到最高score区域的size小于预先设定的阈值。
5. 取该区域的最亮点。

Fig. 2. Atmospheric light estimation. By recursively dividing an image into four smaller regions and selecting the region with the highest score, we determine the region that is hazed most densely and then choose the atmospheric light within the region. In this example, the red block is the selected region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

## Optimal transmission estimation

• Mean squared error (MSE) contrast
• Michelson contrast
• Weber contrast

Fig. 3. 比较三个对比定义在去雾的效果。(a)输入图像.去雾图像和与其对应的转换映射表 (b) the MSE contrast, (c) the Michelson contrast, (d) the Weber contrast. 在转换映射表中，黄色和红色像素分别表示近、远景点。(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

J(p)=1t(I(p)A)+A)

CMSE=p=1N(Ic(p)I¯c)2t2N

Fig. 4. An example of the transformation function. Input pixel values are mapped to output pixel values according to the transformation function, depicted by the black line. The red regions represent the information loss due to the truncation of output pixel values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Relationship between the transmission value and the information loss. A smaller transmission value causes more severe truncation of pixel values and a larger amount of information loss. (a) An input hazy image. The restored dehazed images with transmission values of (b) t=0.1$t = 0.1$, (c) t=0.3 $t = 0.3$, (d) t=0.5 $t = 0.5$, and (e) t=0.7 $t = 0.7$.

Econtrast=cr,g,bpB(Jc(p)J¯c)2Nb=cr,g,bpB(Ic(p)I¯c)2t2Nb

Eloss=cr,g,bpB{(min{0,J(p)})2+(max{0,J(p))255})2}=cr,g,b{i=0αc(iAct+Ac)2hc(i)+i=βc255(iAct+Ac255)2hc(i)}

E=Econtrast+λEloss

## Transmission refinement

Fig. 6. Illustration of the shiftable window scheme: (a) centered window and (b) shiftable window

After obtaining the pixel-based transmission map, we dehaze the input image based on (1). However, as suggested in [11], we constrain the minimum transmission value to be greater than 0.1, since a smaller value tends to amplify noise. Furthermore, the restored hazy image often has darker pixel values than the input image. Thus, we apply the gamma correction [1] to the restored image with an empirically selected gamma of 0.8.

Fig. 7. Transmission map refinement: (a) Input hazy images, (b) the block-based transmission maps, and the pixel-based transmission maps using (c) the centered window scheme and (d) the shiftable window scheme. In the transmission maps, yellow and red colors represent near and far scene points, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

# Video dehazing

## Temporal coherence

Y为通道，J为原图像，P为像素点，K为帧。同时假设大气光A在整个视频中的值不变，当然有可以重新计算。我们也能够轻易获取透射率之间的关系。

τ $\tau$为临时一致性因子，其取值如下

σ $\sigma$在本文中去10。最后文章也引入了个损失函数：

E=Econtrast+λLEloss+λTEtemporal

## Fast transmission refinement

we use a Gaussian window pixels around the window center have higher weights, whereas pixels farther from the center have lower weights. Then, we obtain the final optimal transmission value for each pixel, by computing the Gaussian weighted sum of the transmission values associated with the overlapping windows.

• 4
点赞
• 15
收藏
• 0
评论
03-03 4469
03-16 119
09-09 2408
01-07 8036
03-24
10-18 2807
07-04 2733

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助