图论基础知识(部分)

10.3 图的表示和图的同构
一、图的表示
  1. 邻接表:该表规定与图的每个顶点邻接的顶点。可以用来描述简单图和有向图。

  2. 简单图的邻接矩阵:为了简化计算;这是基于顶点的邻接关系。

    【定义】假设 G = ( V , E ) G = (V,E) G=(V,E)是简单图 ,其中 ∣ V ∣ = n |V|=n V=n.假设把 G G G的顶点任意地排列成 v 1 , v 2 , . . . , v n v_1,v_2,...,v_n v1,v2,...,vn。对这个顶点表来说, G G G的邻接矩阵 A A A是一个 n × n n×n n×n 0 - 1 0-1 01​矩阵,它满足这样的性质
    a i j = 1 , i f { v i , v j }   i s   a n   e d g e   o f   G ;   a i j = 0 , o t h e r w i s e . {a_{ij}=1,if \{v_i,v_j\}{\ }is{\ }an{\ }edge{\ }of{\ }G;}\\ {\ }{a_{ij}}=0,otherwise. aij=1,if{vi,vj} is an edge of G; aij=0,otherwise.
    【结论】无向图的邻接矩阵总是对称的。

    【注意】

    1 ) 1) 1) 图的邻接矩阵依赖于所选择的顶点的顺序。因此带 n n n个顶点的图有 n ! n! n!个不同的邻接矩阵,因为 n n n个顶点有 n ! n! n!不同的顺序。
    2 ) 2) 2) 当图里的边相对少时,邻接矩阵是稀疏矩阵,即只有很少的非 0 0 0项的矩阵。可以用特殊的方法来表示和计算这样的矩阵。

  3. 伪图或多重图的邻接矩阵:

    【定义】

    1 ) 1) 1) 邻接矩阵也可以表示带环和多重边的无向图。

    2 ) 2) 2) 把顶点 a i a_i ai上的环表示成邻接矩阵 ( i , i ) (i,i) (i,i)位置上的 1 1 1

    3 ) 3) 3) 当出现多重边时候,邻接矩阵不再是 0 - 1 0-1 01矩阵,这是因为邻接矩阵的第 ( i , j ) (i,j) (i,j)项等于与 { a i , a j } \{a_i,a_j\} {ai,aj}关联的边数。

    4 ) 4) 4) 包括多重图与伪图在内的所有无向图都具有对称的邻接矩阵。

  4. 有向图的邻接矩阵:

    【定义】

    1 ) 1) 1) 假设 G = ( V , E ) G=(V,E) G=(V,E)是含 n n n个顶点的有向图。若 v 1 , v 2 , v 3 , . . . , v n {v_1,v_2,v_3,...,v_n} v1,v2,v3,...,vn是有向图任意的顶点序列。

    2 ) 2) 2) 若有向图 G = ( V , E ) G=(V,E) G=(V,E) v i , v j v_i,v_j vi,vj有向边,则它的矩阵在 ( i , j ) (i,j) (i,j)位置上有 1 1 1,否则为 0 0 0
    I n   o t h e r   w o r d s ,   f o r   a n   a d j a c e n c y   m a t r i x   A = [ a i j ] , a i j = 1 ,   i f   ( v i , v j )   i s   a n   e d g e   o f   G ; a i j = 0 , o t h e r w i s e . \begin{aligned} &In{\ }other{\ }words,{\ }for{\ }an{\ }adjacency{\ }matrix{\ } A = [a_{ij}],\\&a_{ij} = 1,{\ }if {\ }(v_i,v_j){\ } is {\ }an {\ }edge{\ } of {\ }G;\\&{a_{ij}} = 0,otherwise. \end{aligned} In other words, for an adjacency matrix A=[aij],aij=1, if (vi,vj) is an edge of G;aij=0,otherwise.
    【结论】

    1 ) 1) 1). 对无向图来说,邻接矩阵每一行各个位置上数字之和代表什么?表示与顶点 i i i关联的边数,它等于顶点 i i i的度减去在顶点 i i i上的环数。

    2 ) 2) 2). 对于有向图而言,邻接矩阵每一行各个位置上数字之和代表什么?代表该顶点的出度 d e g + ( v i ) {deg^{+}}{(v_i)} deg+(vi)

    3 ) 3) 3). 对于有向图而言,邻接矩阵每一列各个位置上数字之和代表什么?代表该顶点的入度 d e g − ( v i ) {deg^{-}}{(v_i)} deg(vi)

  5. 关联矩阵:

    【定义】设 G = ( V , E ) G = (V,E) G=(V,E)是无向图。设 v 1 , v 2 , . . . , v n {v_1,v_2,...,v_n} v1,v2,...,vn是顶点而 e 1 , e 2 , . . . , e m {e_1,e_2,...,e_m} e1,e2,...,em是边。则相对于 V V V E E E的这个顺序的关联矩阵是 n × m n×m n×m矩阵 M = [ m i j ] n × m M=[m_{ij}]_{n{\times}m} M=[mij]n×m.
    m i j = { 1 , w h e n   e d g e   e j   i s   i n c i d e n t   w i t h   v i , 0 , o t h e r w i s e m_{ij}=\begin{cases} 1, & when{\ }edge{\ }{e_j}{\ }is{\ }incident{\ }with{\ }v_i,\\ 0, & otherwise \end{cases} mij={1,0,when edge ej is incident with vi,otherwise
    【结论】在无向图中的关联矩阵中,每列中有两个 1 1 1的表明这条边与这两个顶点相连接,每列有一个 1 1 1的表明存在环。

二、图的同构
  1. 【定义】设 G 1 = ( V 1 , E 1 ) G_1= (V_1, E_1) G1=(V1,E1) G 2 = ( V 2 , E 2 ) G_2= (V_2, E_2) G2=(V2,E2)是简单图,若存在一对一的和映上的从 V 1 V_1 V1 V 2 V_2 V2 的函数 f f f,且 f f f具有这样的性质,对 V 1 V_1 V1里所有的 a a a b b b来说, a a a b b b G 1 G_1 G1里邻接,当且仅当 f ( a ) f(a) f(a) f ( b ) f(b) f(b) G 2 G_2 G2里邻接,就说 G 1 G_1 G1 G 2 G_2 G2是同构的。这样的函数 f f f称为同构。换句话说,当两个简单图同构时,两个图的顶点之间具有保持邻接关系的一一对应。

  2. 【怎么判断两个简单图是否同构】在两个带 n n n个顶点的简单图顶点集之间有 n ! n! n!种可能的一一对应,通过检验每一种对应来看它是否保持邻接关系和不邻接关系是不可行的。然而,可以通过说明两个简单图不具有同构的图所必须具有的性质来说明它们不同构。我们把这样的性质称为对简单图的同构来说的不变量。

  3. i n v a r i a n t s invariants invariants(不变量)】
    ----- things that G 1 G_1 G1 and G 2 G_2 G2 must have in common to be isomorphic.

  4. 【同构图中的重要不变量】相同的顶点数,有相同的边数,有相同的顶点度,找到相同的邻接矩阵等等。

  5. 【步骤】

    1 ) 1) 1) Check invariants,

    2 ) 2) 2) Try to find an isomorphism f,

    3 ) 3) 3) Show that f preserves adjacency relation.

10.4 连通性
一、无向图中的通路及连通性
定义1
  1. G {G} G的一个非空点、边交替序列 W = v 0 e 1 v 1 e 2 v 2 . . . e k v k {W=}{v_0}{e_1}{v_1}{e_2}{v_2}...{e_k}{v_k} W=v0e1v1e2v2...ekvk称为一条从 v 0 {v_0} v0 v k {v_k} vk的路径或路径 ( v 0 , v k ) ({v_0},{v_k}) (v0vk),其中, v i − 1 {v_{i-1}} vi1 v i {v_i} vi e i {e_i} ei的端点( 1 ≤ i ≤ k {1\leq{i}\leq{k}} 1ik)。称 v 0 v_0 v0 W W W的起点, v k v_k vk W W W的终点, v i ( 1 ≤ i ≤ k − 1 ) {v_i}(1{\leq}i{\leq}{k-1}) vi(1ik1) W W W的内点, k k k W W W的路长。

  2. W = v 0 e 1 v 1 e 2 v 2 . . . e k v k {W=}{v_0}{e_1}{v_1}{e_2}{v_2}...{e_k}{v_k} W=v0e1v1e2v2...ekvk是一条 ( v 0 , v k ) ({v_0},{v_k}) (v0vk)路径, W {W} W逆转后的 v k e k . . . v 2 e 2 v 1 e 1 v 0 {v_k}{e_k}...{v_2}{e_2}{v_1}{e_1}{v_0} vkek...v2e2v1e1v0必为一条路径,记 ( v 0 , v k ) ({v_0},{v_k}) (v0vk) W − 1 {W^{-1}} W1

  3. 路径 W {W} W的部分相连项构成的子序列 v i e i v i + 1 . . . e j v j , 0 ≤ i ≤ j ≤ j {v_i}{e_i}{v_{i+1}}...{e_j}{v_j}, {0\leq{i}\leq{j}\leq{j}} vieivi+1...ejvj,0ijj, 也必构成一条路径,这条路径称为 W {W} W的节。

  4. W {W} W可以与另一条路径 W ′ = v k e k + 1 v k + 1 . . . e l v l {W^{'}}{=}{v_k}{e_{k+1}}{v_{k+1}}...{e_l}{v_l} W=vkek+1vk+1...elvl衔接在一起便得一条新路径,记为 W W ′ {WW^{'}} WW

  5. 简单图中,路径 v 0 e 1 v 1 e 2 v 2 . . . e k v k {v_0}{e_1}{v_1}{e_2}{v_2}...{e_k}{v_k} v0e1v1e2v2...ekvk可简单地用其顶点序列 v 0 v 1 v 2 v 3 . . . v k {v_0}{v_1}{v_2}{v_3}...{v_k} v0v1v2v3...vk表示。

定义2
  1. v 0 e 1 v 1 e 2 v 2 . . . e k v k {v_0}{e_1}{v_1}{e_2}{v_2}...{e_k}{v_k} v0e1v1e2v2...ekvk为图 G {G} G中的一条路径,若边 e 1 , e 2 , . . . , e k {e_1},{e_2},...,{e_k} e1,e2,...,ek互不相同,则称该路径为迹;若点序列 v 0 , v 1 , v 2 , . . . , v k {v_0},{v_1},{v_2},...,{v_k} v0,v1,v2,...,vk互不相同,则称该路径为路。
定义3
  1. v 0 e 1 v 1 e 2 v 2 . . . e k v k {v_0}{e_1}{v_1}{e_2}{v_2}...{e_k}{v_k} v0e1v1e2v2...ekvk 是图 G {G} G中的一条路径且 k ≥ 1 {k\geq{1}} k1,如果 v 0 = v k {v_0}={v_k} v0=vk,则称该路径为闭路径,否则称为开路径。特别地,若 v 0 e 1 v 1 e 2 v 2 . . . e k v k {v_0}{e_1}{v_1}{e_2}{v_2}...{e_k}{v_k} v0e1v1e2v2...ekvk 是一条迹, k ≥ 1 {k\geq{1}} k1,当 v 0 = v k {v_0}={v_k} v0=vk时称为闭迹,否则称为开迹。闭迹也称为回路。
定义4
  1. v 0 e 1 v 1 e 2 v 2 . . . e k v k {v_0}{e_1}{v_1}{e_2}{v_2}...{e_k}{v_k} v0e1v1e2v2...ekvk是一条闭迹,如果 v 0 , v 1 , v 2 , . . . , v k − 1 {v_0},{v_1},{v_2},...,{v_{k-1}} v0,v1,v2,...,vk1互不相同,则称该闭迹为圈或 k {k} k圈,且当 k {k} k为偶数时称为偶圈, k {k} k为奇数时称为奇圈。
  2. 一条路必是一条迹。
  3. 自环和两条平行边都自成一圈。
定理1
  1. 若图 G {G} G中每个顶点度数至少为 2 {2} 2,则 G {G} G中必含有圈。

    【证明】取一个点 v 1 {v_1} v1,因为其度数不小于 2 2 2,至少有一个邻点 v 2 v_2 v2与其邻接,否则就自身成环,度数为2;对于其中任意一个点 v k {v_k} vk,要么与 v k + 1 {v_{k+1}} vk+1邻接,或者与 v 1 {v_1} v1邻接,后者构成一个圈;直至最后,必存在 v k {v_k} vk v 1 {v_1} v1邻接,否则就有 v k {v_k} vk的度数小于 2 2 2,与题意矛盾,证毕。

定义5
  1. G G G是一个图, u , v ∈ V ( G ) u,v{\in}V(G) uvV(G),如果存在从 u u u v v v的路,则称 u , v u,v uv是相连的或连通的,若 G G G中任意两点都连通,则称图 G G G是连通的。

  2. G G G中顶点之间的连通关系是一个等价关系。

  3. 连通关系为等价关系的

    【证明】 ( 1 ) (1) (1)自反性,对于任意 v ∈ V ( G ) v{\in}V(G) vV(G),都有 ( v , v ) ∈ V ( G ) (v,v){\in}V(G) (v,v)V(G),这说明自反性成立。

    ( 2 ) (2) (2)对称性,由于存在从 u u u v v v的连通关系,即 ( u , v ) ∈ V ( G ) (u,v){\in}V(G) (u,v)V(G),那么也存在从 v v v u u u的连通关系,那么 ( v , u ) ∈ V ( G ) (v,u){\in}V(G) (v,u)V(G),所以对称性成立。

    ( 3 ) (3) (3)传递性,存在 u u u v v v的连通关系,也存在 v v v w w w的连通关系,那么由图的性质,就存在 u u u w w w的连通关系,即
    ( u , v ) ∈ V ( G ) , ( v , w ) ∈ V ( G ) → ( u , w ) ∈ V ( G ) (u,v){\in}V(G),(v,w){\in}V(G){\rightarrow}(u,w){\in}V(G) (u,v)V(G),(v,w)V(G)(u,w)V(G)
    所以,传递性成立。证毕。

  4. 根据该关系可将 V ( G ) V(G) V(G)划分成一些等价类 V 1 , V 2 , . . . , V n {V_1},{V_2},{...},{V_n} V1V2...Vn,每个 V i V_i Vi导出的子图 G ( V i ) G(V_i) G(Vi)称为 G G G的一个连通分支。

  5. G G G的连通分支数通常用 ω ( G ) {\omega}(G) ω(G)表示 。

  6. G G G是连通的 ⇔ ω ( G ) = 1 {\Leftrightarrow}{\omega}(G)=1 ω(G)1

定义6
  1. u , v ∈ V ( G ) u,v{\in}V(G) uvV(G),若 u , v u,v uv连通,则称最短 ( u , v ) (u,v) (uv)路的长为 u , v u,v uv距离,记为 d ( u , v ) d(u,v) d(uv)。当 u , v u,v uv不连通时,认为 u , v u,v uv的距离是 ∞ \infty
定理2
  1. 一个图 G G G是二分图 ⇔ G {\Leftrightarrow}{G} G中不含奇圈。

    【证明】

    ( 1 ) {(1)} (1)必要性

    G = { X , Y } G={\{X,Y\}} G={XY}为一个二分图,

    1. 首先考虑 G {G} G作为二分图无法构成圈的情况,这里如果无法构成圈,也说明了无法构成奇圈,结论成立。
    2. 假设能够构成一个圈,令 C = v 0 e 1 v 1 e 2 v 2 … e k v k e k + 1 v 0 C={v_0}{e_1}{v_1}{e_2}{v_2}{…}{e_{k}}{v_k}{e_{k+1}}{v_0} C=v0e1v1e2v2ekvkek+1v0是一个圈,下面证明: C {C} C为偶圈。
    3. 【证明】不妨设 v 0 ∈ X {v_0}{\in}X v0X,由于二分图的性质, v 1 ∈ Y {v_1}{\in}Y v1Y v 2 ∈ X {v_2}{\in}X v2X . . . {...} ...,由于 C {C} C的末尾 v 0 ∈ X {v_0}{\in}X v0X,则 v k ∈ Y {v_k}{\in}Y vkY,这里不难发现, v 2 i + 1 ∈ Y {v_{2i+1}}{\in}Y v2i+1Y v 2 i ∈ X {v_{2i}}{\in}X v2iX 0 ≤ i {0{\leq}i} 0i,由于 v 0 ∈ X {v_0}{\in}X v0X,则有 v k ∈ Y {v_k}{\in}Y vkY,则 k k k为奇数,由此可得这里有 k + 1 {k+1} k+1条边,故 C C C为偶圈。

    ( 2 ) {(2)} (2)充分性

    假设 G {G} G中无奇圈,构造出 V ( G ) {V(G)} V(G)的划分 { X , Y } {\{X,Y\}} {XY}

    1. 这里给出构造的方法:不妨设点 u ∈ X ∈ V ( G ) u{\in}X{\in}V(G) uXV(G) G {G} G中其他的点与 u {u} u的距离为奇数的点在 Y {Y} Y中,与 u {u} u的距离为偶数的点在 X {X} X​中,这里以表达式的形式给出就是
      { v i ∈ X ∣ d ( u , v i ) = 2 k , k ∈ Z } , { v i ∈ Y ∣ d ( u , v i ) = 2 k + 1 , k ∈ Z } , i ≥ 0 ; \{{v_i}{\in}X|d(u,{v_i})={2k},k{\in}Z\}, \{{v_i}{\in}Y|d(u,{v_i})={2k+1},k{\in}Z\},{i{\geq}0}; {viXd(u,vi)=2k,kZ},{viYd(u,vi)=2k+1,kZ},i0;
      由上述定义可知 u ∈ X {u{\in}X} uX,下面证明划分 { X } \{X\} {X}中每对点都不相互邻接,同理对于划分 { Y } \{Y\} {Y}也是如此。下面分两种情况讨论。

    2. 【情况一】不妨设任意 v i , v j ∈ X {v_i},{v_j}{\in}X vivjX i ≠ j {i{\neq}j} i=j,,由于 d ( u , v i ) , d ( u , v j ) {d(u,v_i)},{d(u,v_j)} d(u,vi),d(u,vj)均为偶数,设此时路 ( u , v i ) , ( u , v j ) (u,v_i),(u,v_j) (u,vi),(u,vj)没有重复的点,那么如果 v i , v j {v_i,v_j} vi,vj邻接,则 d ( v i , v j ) = 1 d(v_i,v_j)=1 d(vi,vj)=1,那么由 { u , v i } , { u , v j } , { v i , v j } \{u,v_i\},\{u,v_j\},\{v_i,v_j\} {u,vi},{u,vj},{vi,vj}构成的圈为奇圈,与题意矛盾,不成立,所以 d ( v i , v j ) = ∞ d(v_i,v_j)={\infty} d(vi,vj)=,即是 v i , v j v_i,v_j vi,vj不邻接。

      【情况二】不妨设任意 v i , v j ∈ X {v_i},{v_j}{\in}X vivjX i ≠ j {i{\neq}j} i=j,,由于 d ( u , v i ) , d ( u , v j ) {d(u,v_i)},{d(u,v_j)} d(u,vi),d(u,vj)均为偶数,设此时路 ( u , v i ) , ( u , v j ) (u,v_i),(u,v_j) (u,vi),(u,vj)存在重复的点,那么如果 v i , v j {v_i,v_j} vi,vj邻接,则 d ( v i , v j ) = 1 d(v_i,v_j)=1 d(vi,vj)=1,设这个重复的点为 v k v_k vk,首先考虑 v k ∈ Y , k ≥ 0 v_k{\in}Y,k{\geq}0 vkYk0的情况,假设 d ( u , v i ) d(u,v_i) d(u,vi) d ( u , v j ) {d(u,v_j)} d(u,vj)中从 u {u} u v k {v_k} vk d ( u , v k ) d(u,v_k) d(u,vk)不同,则与 d ( u , v i ) d(u,v_i) d(u,vi)表示为最短路线的定义矛盾,所以两条路线中,即 d ( u , v i ) , d ( u , v j ) {d(u,v_i)},{d(u,v_j)} d(u,vi),d(u,vj) d ( u , v k ) d(u,v_k) d(u,vk)这一项必相同,由已知 d ( u , v k ) + d ( v k , v i ) = d ( u , v i ) , d ( u , v k ) + d ( v k , v j ) = d ( u , v j ) {d(u,v_k)+d(v_k,v_i)=d(u,v_i),d(u,v_k)+d(v_k,v_j)=d(u,v_j)} d(u,vk)+d(vk,vi)=d(u,vi),d(u,vk)+d(vk,vj)=d(u,vj)均为偶数,所以 d ( v k , v i ) + d ( v k , v j ) = d(v_k,v_i)+d(v_k,v_j)= d(vk,vi)+d(vk,vj)=偶数,如若 d ( v i , v j ) = 1 d(v_i,v_j)=1 d(vi,vj)=1,那么 ( v k , v i ) , ( v k , v j ) , ( v i , v j ) (v_k,v_i),(v_k,v_j),(v_i,v_j) (vk,vi),(vk,vj),(vi,vj)构成一个奇圈,这与题意矛盾,所以 v i , v j v_i,v_j vi,vj不邻接,同理可证明 v k ∈ X {v_k}{\in}X vkX结论也成立。

      证毕。当然也可以采用着色的方法进行证明。

在这里插入图片描述

定理3
  1. G G G是具有 n n n个顶点的简单图,若 G G G ε \varepsilon ε条边, ω \omega ω个连通分支,则
    n − ω ≤ ε ≤ 1 2 ( n − ω ) ( n − ω + 1 ) n-{\omega}{\leq}{\varepsilon}{\leq}{\frac{1}{2}}(n-{\omega})(n-{\omega}+1) nωε21(nω)(nω+1)
    【证明】 ( 1 ) (1) (1) 先证明 n − ω ≤ ε n-{\omega}{\leq}{\varepsilon} nωε,对 ε {\varepsilon} ε采用数学归纳法。归纳奠基:对于 ε = 0 {\varepsilon}=0 ε=0,那么 ω = n {\omega}=n ω=n,所以有 n − ω ≤ ε {n-{\omega}}{\leq}{\varepsilon} nωε,成立;假设当 ε = k {\varepsilon}=k ε=k时命题也成立,则有 n − ω ≤ k {n-{\omega}}{\leq}{k} nωk成立,下证明 ε = k + 1 {\varepsilon}=k+1 ε=k+1时命题也成立,考虑从 k k k k + 1 {k+1} k+1的过程,可以视作图 G G G去掉一条边,那么将会有两种情况:a.去掉该边之后不影响连通分支的数量,那么 n − ω ≤ ε ≤ ε + 1 {n-{\omega}}{\leq}{\varepsilon}{\leq}{{\varepsilon}+1} nωεε+1成立,b.去掉该边之后连通分支的数量 + 1 {+1} +1(反过来相当于减少了一个连通分支),那么由于 n − ω ≤ ε {n-{\omega}}{\leq}{\varepsilon} nωε成立,则 n − ( ω − 1 ) ≤ ε + 1 {n-{({\omega}-1)}{\leq}{\varepsilon+1}} n(ω1)ε+1也成立。故 ε = k + 1 {\varepsilon}=k+1 ε=k+1时命题也成立。综上所述,结论成立!

    ( 2 ) (2) (2)再证明 ε ≤ 1 2 ( n − ω ) ( n − ω + 1 ) {\varepsilon}{\leq}{\frac{1}{2}}(n-{\omega})(n-{\omega}+1) ε21(nω)(nω+1),对于每个联通分支而言,当每个连通分支各自都构成完全图的情况下,边数 ε {\varepsilon} ε最大,不妨设每个连通分支的边数为 ε 1 , ε 2 , ε 3 , . . . , ε ω {{\varepsilon}_1},{\varepsilon}_2,{\varepsilon}_3,...,{\varepsilon}_{\omega} ε1,ε2,ε3,...,εω,每个连通分支的顶点数为 n 1 , n 2 , n 3 , . . . , n w {n_1},{n_2},{n_3},...,{n_w} n1,n2,n3,...,nw,由于 ε 1 ≤ C n 1 2 {{\varepsilon}_1}{\leq}{C_{n_1}^{2}} ε1Cn12 ε 2 ≤ C n 2 2 {{\varepsilon}_2}{\leq}{C_{n_2}^{2}} ε2Cn22 ε 3 ≤ C n 3 2 {{\varepsilon}_3}{\leq}{C_{n_3}^{2}} ε3Cn32 . . . ... ... ε ω ≤ C n ω 2 {{\varepsilon}_{\omega}}{\leq}{C_{n_{\omega}}^{2}} εωCnω2;则有
    ε 1 + ε 2 + ε 3 + . . . + ε ω ≤ C n 1 2 + C n 2 2 + C n 3 2 + . . . + C n ω 2 {{\varepsilon}_1}+{{\varepsilon}_2}+{{\varepsilon}_3}+...+{{\varepsilon}_{\omega}}{\leq}{C_{n_1}^{2}}+{C_{n_2}^{2}}+{C_{n_3}^{2}}+...+{C_{n_{\omega}}^{2}} ε1+ε2+ε3+...+εωCn12+Cn22+Cn32+...+Cnω2
    成立;由数学知识可得:
    C n 1 2 + C n 2 2 + C n 3 2 + . . . + C n ω 2 ≤ C n 1 + n 2 + . . . + n ω − ( ω − 1 ) 2 = C n − ω + 1 2 = 1 2 ( n − ω ) ( n − ω + 1 ) . {C_{n_1}^{2}}+{C_{n_2}^{2}}+{C_{n_3}^{2}}+...+{C_{n_{\omega}}^{2}}{\leq}{C_{{n_1}+{n_2}+...+{n_{\omega}}-({\omega}-1)}^{2}}={C_{n-{\omega}+1}^2}={\frac{1}{2}}(n-{\omega})(n-{\omega}+1). Cn12+Cn22+Cn32+...+Cnω2Cn1+n2+...+nω(ω1)2=Cnω+12=21(nω)(nω+1).
    这里
    C s 2 + C t 2 ≤ C s + t − 1 2 , s ≥ 2 , t ≥ 2 . {C_{s}^{2}}+{C_{t}^{2}}{\leq}{C_{s+t-1}^2},{s{\geq}2},{t{\geq}2}. Cs2+Ct2Cs+t12,s2,t2.
    请自行证明该式成立即可。综上,结论成立,证毕!

  2. G G G n n n个顶点, ω {\omega} ω个分支时,怎样让边最多?即 G G G的一个连通分支是 n - ω + 1 n-{\omega}+1 nω1个点的完全图,其余 ω - 1 {\omega}-1 ω1个连通分支均是弧立点。此时边数 ε = 1 2 ( n − ω ) ( n − ω + 1 ) {\varepsilon}{=}{\frac{1}{2}}(n-{\omega})(n-{\omega}+1) ε=21(nω)(nω+1)

  3. ω = 1 {\omega}=1 ω=1时, ε ≥ n − 1 {\varepsilon}{\geq}{n-1} εn1。即 n n n个顶点的连通图至少有 n - 1 n-1 n1条边。

  4. 具有 n n n个顶点, n - 1 n-1 n1条边的连通图称为最小连通图。

二、有向图中的通路及连通性
定义1
  1. 有向路径:一个非空有限点、弧交替序列 W = v 0 a 1 v 1 a 2 v 2 . . . a k v k {W=}{v_0}{a_1}{v_1}{a_2}{v_2}...{a_k}{v_k} W=v0a1v1a2v2...akvk对于 i = 1 , 2 , . . . , k i=1,2,...,k i1,2,...,k,弧 a i a_i ai的头为 v i v_i vi,尾为 v i - 1 v_{i-1} vi1,有向路径 v 0 a 1 v 1 a 2 v 2 . . . a k v k {v_0}{a_1}{v_1}{a_2}{v_2}...{a_k}{v_k} v0a1v1a2v2...akvk也常用它的顶点序列 v 0 v 1 v 2 … v k v_0v_1v_2…v_k v0v1v2vk表示。
  2. 区分有向迹,有向路,有向回路,有向圈。
  3. 若存在有向 ( u , v ) (u,v) (u,v)路,则称 v v v是从 u u u可达的。
  4. u , v u,v u,v互相可达,则称 u , v u,v u,v是双向连通的。
  5. 若对 D D D中任何两顶点,至少有一顶点可从另一顶点可达,则称 D D D是单向连通图。
  6. D D D中任何两顶点都是双向连通的,则称 D D D是双向连通图或强连通图。
  7. 双向连通关系是 D D D的顶点集 V V V上的一个等价关系。
  8. 双向分支或强连通分支。
  9. D D D强连通 ⇔ D {\Leftrightarrow}D D恰有一个强连通分支。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值