图论基本知识

1.图的表示

对于一个图(graph)G=(V,E)由顶点集V(vertex)和边集E(edges)组成。每一条边就是一个点对(u,w),其中u、w属于V。

边:单向边,双向边

权值:有点权,边权

2.一般做法

建图+算法  

3.建边

建边有三种方法:

1.邻接矩阵 a[maxn][maxn] 

int main()
{
    memset(a,0,sizeof(a));
    int u,v,val;
    //若u,v之间有权值为val的双向边
    a[u][v]=a[v][u]=val;
    //u->v单向边,无权值
    a[u][v]=1;
}

2.stl:vector存边

没有权值vector存int ,有全权值的话要用结构体

struct node
{
    int to,val;
};
vector<node>v1[maxn];//储存双向边
vector<int>v[maxn];//储存单向边
int main()
{
    int n,x,y,val;
    for(int i=1;i<=n;i++) v[i].clear();
    //x->y 单向边没有权值
    v[x].push_back(y);

    //x<->y 双向边有权值val,要加两次
    v1[x].push_back(node{y,val});
    v1[y].push_back(node{x,val});
}

3.邻接表(链式向前星) 

较为抽象,但是也是用的最多的。

struct node
{
    int to,next,val;
}edge[maxn*2];
void init()
{
    sign=0;
    for(int i=0;i<=n;i++)
        head[i]=-1;
}
void add(int u,int v,int val)
{
    edge[sign].to=v;
    edge[sign].next=head[u];
    edge[sign].val=val;
    head[u]=sign++;
}

最短路算法:

1.dij   复杂度O(n^2)

从最小点松弛,从没有走过中的最小的点去看能不能,通过边mp[minpos][j],将其他点到起点的距离缩短。

#include<bits/stdc++.h>
using namespace std;
const int inff=0x3f3f3f3f;
const int maxn=105;
int d[maxn];//d[i]表示i点到起点的最短距离
int mp[maxn][maxn];//图
int vis[maxn];//标记是否走过
int n,m;
void dij(int start)
{
    for(int i=1;i<=n;i++) d[i]=inff;
    d[start]=0;
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)//找到最所有点中最小的点
    {
        int minpos=-1;//标记最小位置
        for(int j=1;j<=n;j++)
        {
            if(!vis[j])//j点没有走过
                if(minpos==-1||d[j]<d[minpos])
                    minpos=j;
        }
        //找到所有点中的最小点,松弛该点到其他的距离
        if(d[minpos]==inff) break;
        vis[minpos]=1;
        for(int j=1;j<=n;j++)
        {
            if(!vis[j])
            {
                int x=d[minpos]+mp[minpos][j];//最小点到其他点的距离
                if(x<d[j])
                    d[j]=x;
            }
        }
    }
}
int main()
{
    int x,y,val;
    while(cin>>n>>m,n+m)
    {
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                mp[i][j]=inff;
        while(m--)
        {
            scanf("%d %d %d",&x,&y,&val);
            mp[x][y]=mp[y][x]=val;
        }//以上为建边
        dij(1);
        printf("%d\n",d[n]);
    }
    return 0;
}

vector版本的

#include<bits/stdc++.h>
using namespace std;
const int inff=0x3f3f3f3f;
const int maxn=105;
int d[maxn];//d[i]表示i点到起点的最短距离
int vis[maxn];//标记是否走过
int n,m;
struct node
{
    int to,val;
};
vector<node>v[maxn];
void dij(int start)
{
    for(int i=1;i<=n;i++) d[i]=inff;
    d[start]=0;
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)//找到最所有点中最小的点
    {
        int minpos=-1;//标记最小位置
        for(int j=1;j<=n;j++)
        {
            if(!vis[j])//j点没有走过
                if(minpos==-1||d[j]<d[minpos])
                    minpos=j;
        }
        //找到所有点中的最小点,松弛该点
        if(d[minpos]==inff) break;
        vis[minpos]=1;
        //这里就不用O(n)循环,就是遍历minpos连接的边
        for(int j=0;j<v[minpos].size();j++)
        {
            int to=v[minpos][j].to;
            int val=v[minpos][j].val;
            if(d[minpos]+val<d[to])
                d[to]=d[minpos]+val;
        }
    }
}
int main()
{
    int x,y,val;
    while(cin>>n>>m,n+m)
    {
        for(int i=1;i<=n;i++) v[i].clear();
        while(m--)
        {
            scanf("%d %d %d",&x,&y,&val);
            v[x].push_back(node{y,val});
            v[y].push_back(node{x,val});
        }
        dij(1);
        printf("%d\n",d[n]);
    }
    return 0;
}

复杂度O(mlogn)优先队列+dij

https://blog.csdn.net/qq_41575950/article/details/80246217

2 .SPFA  期望复杂度O(E)

可以解决边权有负值的,最长路等等dij无法处理的。

#include<bits/stdc++.h>
using namespace std;
const int inff=0x3f3f3f3f;
const int maxn=105;
int d[maxn];//d[i]表示i点到起点的最短距离
int vis[maxn];//标记是否走过
int n,m;
struct node
{
    int to,val;
};
vector<node>v[maxn];
void spfa(int start)
{
    for(int i=1;i<=n;i++) d[i]=inff;
    memset(vis,0,sizeof(vis));
    d[start]=0;
    queue<int> q;
    q.push(start);
    vis[start]=1;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=0;
        for(int i=0;i<v[u].size();i++)
        {
            int e=v[u][i].to;
            int val=v[u][i].val;
            if(d[e]>d[u]+val)
            {
                d[e]=d[u]+val;
                if(!vis[e])
                {
                    q.push(e);
                    vis[e]=1;
                }
            }
        }
    }
}
int main()
{
    int x,y,val;
    while(cin>>n>>m,n+m)
    {
        for(int i=1;i<=n;i++) v[i].clear();
        while(m--)
        {
            scanf("%d %d %d",&x,&y,&val);
            v[x].push_back(node{y,val});
            v[y].push_back(node{x,val});
        }
        spfa(1);
        printf("%d\n",d[n]);
    }
    return 0;
}

邻接表版:

const int maxn=105;
const int maxm=2e5+4;
struct node
{
    int to,p,val;
}edge[maxm];
int d[maxn],vis[maxn],head[maxn];
int n,m,sign;
void add(int u,int v,int val)
{
    edge[sign]=node{v,head[u],val};
    head[u]=sign++;
}
void init()
{
    memset(head,-1,sizeof(head));
    memset(d,inff,sizeof(d));
}
void spfa()
{
    d[1]=0;
    queue<int>q;
    q.push(1);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=0;
        for(int i=head[u];~i;i=edge[i].p)
        {
            int v=edge[i].to;
            int val=edge[i].val;
            if(d[v]>d[u]+val)
            {
                d[v]=d[u]+val;
                if(!vis[v])
                {
                    q.push(v);
                    vis[v]=1;
                }
            }
        }
    }
}
int main()
{
    int x,y,z;
    while(cin>>n>>m,n+m)
    {
        init();
        while(m--)
        {
            scanf("%d%d%d",&x,&y,&z);
            add(x,y,z);
            add(y,x,z);
        }
        spfa();
        printf("%d\n",d[n]);
    }
    return 0;
}

3.flyod 复杂度O(n^3)

#include<bits/stdc++.h>
using namespace std;
const int inff=0x3f3f3f3f;
const int maxn=105;
int a[maxn][maxn];
int n,m;
int main()
{
    int x,y,z;
    while(cin>>n>>m,n+m)
    {
        for(int i=1;i<=n;i++)
        {
            a[i][i]=0;
            for(int j=i+1;j<=n;j++)
                a[i][j]=a[j][i]=inff;
        }
        for(int i=1;i<=m;i++)
            scanf("%d%d%d",&x,&y,&z),a[x][y]=a[y][x]=z;
        for(int k=1;k<=n;k++)
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                    a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
        cout<<a[1][n]<<endl;
    }
    return 0;
}

 

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值