1.图的表示
对于一个图(graph)G=(V,E)由顶点集V(vertex)和边集E(edges)组成。每一条边就是一个点对(u,w),其中u、w属于V。
边:单向边,双向边
权值:有点权,边权
2.一般做法
建图+算法
3.建边
建边有三种方法:
1.邻接矩阵 a[maxn][maxn]
int main()
{
memset(a,0,sizeof(a));
int u,v,val;
//若u,v之间有权值为val的双向边
a[u][v]=a[v][u]=val;
//u->v单向边,无权值
a[u][v]=1;
}
2.stl:vector存边
没有权值vector存int ,有全权值的话要用结构体
struct node
{
int to,val;
};
vector<node>v1[maxn];//储存双向边
vector<int>v[maxn];//储存单向边
int main()
{
int n,x,y,val;
for(int i=1;i<=n;i++) v[i].clear();
//x->y 单向边没有权值
v[x].push_back(y);
//x<->y 双向边有权值val,要加两次
v1[x].push_back(node{y,val});
v1[y].push_back(node{x,val});
}
3.邻接表(链式向前星)
较为抽象,但是也是用的最多的。
struct node
{
int to,next,val;
}edge[maxn*2];
void init()
{
sign=0;
for(int i=0;i<=n;i++)
head[i]=-1;
}
void add(int u,int v,int val)
{
edge[sign].to=v;
edge[sign].next=head[u];
edge[sign].val=val;
head[u]=sign++;
}
最短路算法:
1.dij 复杂度O(n^2)
从最小点松弛,从没有走过中的最小的点去看能不能,通过边mp[minpos][j],将其他点到起点的距离缩短。
#include<bits/stdc++.h>
using namespace std;
const int inff=0x3f3f3f3f;
const int maxn=105;
int d[maxn];//d[i]表示i点到起点的最短距离
int mp[maxn][maxn];//图
int vis[maxn];//标记是否走过
int n,m;
void dij(int start)
{
for(int i=1;i<=n;i++) d[i]=inff;
d[start]=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)//找到最所有点中最小的点
{
int minpos=-1;//标记最小位置
for(int j=1;j<=n;j++)
{
if(!vis[j])//j点没有走过
if(minpos==-1||d[j]<d[minpos])
minpos=j;
}
//找到所有点中的最小点,松弛该点到其他的距离
if(d[minpos]==inff) break;
vis[minpos]=1;
for(int j=1;j<=n;j++)
{
if(!vis[j])
{
int x=d[minpos]+mp[minpos][j];//最小点到其他点的距离
if(x<d[j])
d[j]=x;
}
}
}
}
int main()
{
int x,y,val;
while(cin>>n>>m,n+m)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
mp[i][j]=inff;
while(m--)
{
scanf("%d %d %d",&x,&y,&val);
mp[x][y]=mp[y][x]=val;
}//以上为建边
dij(1);
printf("%d\n",d[n]);
}
return 0;
}
vector版本的
#include<bits/stdc++.h>
using namespace std;
const int inff=0x3f3f3f3f;
const int maxn=105;
int d[maxn];//d[i]表示i点到起点的最短距离
int vis[maxn];//标记是否走过
int n,m;
struct node
{
int to,val;
};
vector<node>v[maxn];
void dij(int start)
{
for(int i=1;i<=n;i++) d[i]=inff;
d[start]=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)//找到最所有点中最小的点
{
int minpos=-1;//标记最小位置
for(int j=1;j<=n;j++)
{
if(!vis[j])//j点没有走过
if(minpos==-1||d[j]<d[minpos])
minpos=j;
}
//找到所有点中的最小点,松弛该点
if(d[minpos]==inff) break;
vis[minpos]=1;
//这里就不用O(n)循环,就是遍历minpos连接的边
for(int j=0;j<v[minpos].size();j++)
{
int to=v[minpos][j].to;
int val=v[minpos][j].val;
if(d[minpos]+val<d[to])
d[to]=d[minpos]+val;
}
}
}
int main()
{
int x,y,val;
while(cin>>n>>m,n+m)
{
for(int i=1;i<=n;i++) v[i].clear();
while(m--)
{
scanf("%d %d %d",&x,&y,&val);
v[x].push_back(node{y,val});
v[y].push_back(node{x,val});
}
dij(1);
printf("%d\n",d[n]);
}
return 0;
}
复杂度O(mlogn)优先队列+dij
https://blog.csdn.net/qq_41575950/article/details/80246217
2 .SPFA 期望复杂度O(E)
可以解决边权有负值的,最长路等等dij无法处理的。
#include<bits/stdc++.h>
using namespace std;
const int inff=0x3f3f3f3f;
const int maxn=105;
int d[maxn];//d[i]表示i点到起点的最短距离
int vis[maxn];//标记是否走过
int n,m;
struct node
{
int to,val;
};
vector<node>v[maxn];
void spfa(int start)
{
for(int i=1;i<=n;i++) d[i]=inff;
memset(vis,0,sizeof(vis));
d[start]=0;
queue<int> q;
q.push(start);
vis[start]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(int i=0;i<v[u].size();i++)
{
int e=v[u][i].to;
int val=v[u][i].val;
if(d[e]>d[u]+val)
{
d[e]=d[u]+val;
if(!vis[e])
{
q.push(e);
vis[e]=1;
}
}
}
}
}
int main()
{
int x,y,val;
while(cin>>n>>m,n+m)
{
for(int i=1;i<=n;i++) v[i].clear();
while(m--)
{
scanf("%d %d %d",&x,&y,&val);
v[x].push_back(node{y,val});
v[y].push_back(node{x,val});
}
spfa(1);
printf("%d\n",d[n]);
}
return 0;
}
邻接表版:
const int maxn=105;
const int maxm=2e5+4;
struct node
{
int to,p,val;
}edge[maxm];
int d[maxn],vis[maxn],head[maxn];
int n,m,sign;
void add(int u,int v,int val)
{
edge[sign]=node{v,head[u],val};
head[u]=sign++;
}
void init()
{
memset(head,-1,sizeof(head));
memset(d,inff,sizeof(d));
}
void spfa()
{
d[1]=0;
queue<int>q;
q.push(1);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u];~i;i=edge[i].p)
{
int v=edge[i].to;
int val=edge[i].val;
if(d[v]>d[u]+val)
{
d[v]=d[u]+val;
if(!vis[v])
{
q.push(v);
vis[v]=1;
}
}
}
}
}
int main()
{
int x,y,z;
while(cin>>n>>m,n+m)
{
init();
while(m--)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
spfa();
printf("%d\n",d[n]);
}
return 0;
}
3.flyod 复杂度O(n^3)
#include<bits/stdc++.h>
using namespace std;
const int inff=0x3f3f3f3f;
const int maxn=105;
int a[maxn][maxn];
int n,m;
int main()
{
int x,y,z;
while(cin>>n>>m,n+m)
{
for(int i=1;i<=n;i++)
{
a[i][i]=0;
for(int j=i+1;j<=n;j++)
a[i][j]=a[j][i]=inff;
}
for(int i=1;i<=m;i++)
scanf("%d%d%d",&x,&y,&z),a[x][y]=a[y][x]=z;
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
cout<<a[1][n]<<endl;
}
return 0;
}