AI产品经理要知道的3种大模型优化方式

本文探讨了大模型的分类,如通用、行业和企业模型,以及三种优化方法(提示工程)。文章还介绍了大模型在AI岗位中的重要性,学习路径,包括从初级应用到模型训练和商业闭环,以及如何获取相关学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、模型的分类

通用大模型:面向广泛场景,提供基础智能服务的模型,如GPT4

行业/领域大模型:针对特定行业需求,如医疗影像分析

企业大模型:为企业内部流程和需求量身定制模型,如客户服务自动化系统。

在这里插入图片描述

二、大模型优化3种方法

1 提示工程:调提示词【prompt engineering】通过输入文本指令让模型按照要求输出期望结果

Prompt 工程:网上有很多教程,最直接去看官网,OpenAI 官方提示工程文档,Claude 官方提示工程文档

在这里插入图片描述
在这里插入图片描述

提示工程核心原则:编写清晰的指令、将复杂任务分解为简单任务、给 LLM 一定的时间空间思考、系统的测试性能变化。

为什么要学AI大模型?

2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 大模型技术概述 大模型通常指参数量巨大、能够处理复杂任务的人工智能模型,尤其是在自然语言处理(NLP)、计算机视觉等领域表现突出。这些模型通过大规模的数据训练,在多个下游任务上展现出强大的泛化能力和适应性[^1]。 #### 主要特点 - **高容量**:具备大量参数,能捕捉复杂的模式和关系。 - **多功能性**:适用于多种任务,如文本生成、翻译、问答系统等。 - **迁移学习能力**:经过预训练的大模型可以通过微调快速适配特定领域或任务的需求[^2]。 --- ### 大模型在产品管理中的应用场景 #### 1. 用户体验优化 产品经理可以利用大模型改善产品的用户体验。例如,在医疗健康类应用中,基于LLM开发的虚拟助手可以帮助用户更高效地获取疾病诊断建议或药物推荐服务。这种智能化交互方式不仅提升了用户的满意度,还可能增加用户粘性。 #### 2. 数据驱动决策支持 通过对海量数据的有效分析,大模型可为企业提供精准洞察力。比如,在市场调研阶段,借助于先进的语义理解技术和情感分析工具,可以从社交媒体评论或者客户反馈中提取有价值的信息用于指导产品研发方向调整以及营销策略制定。 #### 3. 自动化流程改进 许多重复性的业务操作都可以被自动化取代。以文档审阅为例,采用专门针对法律合同审查而设计的语言模型能够显著减少人力投入时间成本;同样地,在软件开发生命周期里运用编码辅助插件也可以提高程序员工作效率并降低错误率。 #### 4. 创意内容生产 对于需要持续创造新鲜有趣的内容平台来说,AI生成的文章图片视频等内容形式正变得越来越重要。虽然目前高质量原创作品仍需依赖人类创作者完成最终润色工作,但初步草稿自动生成已经极大地方便了编辑人员的工作进程[^4]。 --- ```python # 示例代码展示如何加载一个预训练好的大型语言模型进行简单推理 from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf") nlp_pipeline = pipeline('text-generation', model=model, tokenizer=tokenizer) result = nlp_pipeline("Explain the concept of large language models.", max_length=50) print(result) ``` 上述脚本展示了如何使用Hugging Face库加载Llama系列的一个版本执行基本的任务——给定提示词后生成一段解释文字关于什么是大的语言模型。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值