在我的内网中目前运行了影视系统、图书系统、游戏服务器、服务监控及自动化报警、自定义信息流、Ai智能体和工作流等各种服务,这些服务的搭建教程后续将会一一介绍。今天给大家介绍一下如何在群晖NAS上部署人工智能应用Dify,结合NAS上私有的知识库,调用远程大模型,轻松搭建属于自己的Ai智能体和工作流。
不同于其他文章介绍通过Dify来使用聊天大模型,本篇文章主要侧重于智能体、工作流,让你实实在在的提升工作效率
文章目录
一、什么是Dify
二、Dify能够做什么
三、群晖NAS部署教程
-
3.1 开启群晖NAS的ssh访问并克隆代码库
-
3.2 修改.env.example
-
3.3 在Container Manager中创建docker项目
四、玩转Dify
-
4.1 进入到Dify首页
-
4.2 配置大模型API
-
4.3【应用1】智能体
-
4.4【应用2】工作流
-
4.5【应用3】知识库
五、总结
一、什么是Dify
Dify是一个开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力,轻松构建和运营生成式 AI 原生应用。比 LangChain 更易用。
二、Dify能够做什么
-
特定领域的聊天机器人和AI助理
-
不限长____度的创意文档生成
-
自由链接的知识库问答和搜索
-
低代码的构建面向半自助Agent
-
支持私有化部署
-
支持全球的大模型调用(OpenAI、ollama、百度千帆、通义千问等等)
三、群晖NAS部署教程
3.1 开启群晖NAS的ssh访问并克隆代码库
这里直接使用Dify官方仓库的docker-compose进行部署,我这里选择直接ssh到群晖NAS上clone代码库(也可以下载release包,直接上传到NAS的特定目录)
先安装Git
再「控制面板」中启用ssh功能
ssh登录到群晖NAS之后,在特定目录下执行如下命令(我是在/Volume2/docker):
git clone https://github.com/langgenius/dify.git
3.2 修改.env.example
进入到dify/docker目录下,将.env.example修改为.env(或者复制一份为.env)
因为群晖NAS的docker compose版本较低,需要修改一下docker-compse.yaml文件,把不支持的语法删掉
因为80和443端口被我的NAS占用了,所以需要修改.env文件中NGINX对外暴露的http和https端口,这里我设置的是33080和33443(没有需求的也可以不做修改)
同样还是因为docker compose版本较低,需要在dify/docker/volumes手动创建一些文件夹,如下所示:
-
db/data
-
redis/data
-
weaviate
-
app/storage
-
certbot/conf/live
-
certbot/www
3.3 在Container Manager中创建docker项目
打开Container Manager,选择「项目」,点击「新增」
在弹出的窗口中,有以下几点:
-
项目名称:dify(或者其他的,任意)
-
路径:选择Dify的docker目录
-
docker-compose.yaml:选择已有的
一直下一步,并点击完成
等待拉取镜像、构建项目
服务启动之后,可以看到若干运行着的容器
四、玩转Dify
4.1 进入到Dify首页
在浏览器输入群晖NAS的IP+刚才暴露的NGINX端口,比如我的是192.168.66.5:33080,设置管理员账号密码进入到首页。
4.2 配置大模型API
群晖NAS不能直接运行大模型,而国内又访问不了openai,这里我使用了百度千帆的大模型,有免费版本可以使用,有钱的话也可以开通收费api。下面介绍一下如何配置百度千帆大模型。
(1)进入百度千帆官网
(2)登录之后进入到控制台界面,选择「应用接入」,并创建一个应用,记录下API Key、Secret Key
(3)回到Dify首页,在**「设置」->「模型供应商」中选择「文心一言」,输入上面的API Key和Secret Key**,并点击保存。
至此,大模型配置完毕,下面来创建一个智能体玩玩。
4.3 【应用1】智能体
接下来,我们首先来试试创建一个智能体,来获取当天「人工智能」相关的资讯。按照下图来创建一个智能体。
在智能体界面,有几个区域需要了解一下,如下图所示
其中:
-
提示词:用于定义智能体的角色,具备的能力等等
-
变量:提取用户输入的变量
-
上下文:可以挂在知识库
-
工具:智能体具备的这里,我这里的智能体具有获取当前时间、使用网页爬虫爬取信息、并进行搜索的能力 下面提问一下看看,用户提示词为:「使用使用各种工具获取一下当天的人工智能资讯,要求给出3条,用中文回答,并给出参考链接」
还可以查看智能体使用工具的中间结果
4.4【应用2】工作流
接下来,介绍一下如何使用Dify搭建工作流,将繁琐的工作搭建成PipeLine,解放我们的双手。让我们来实现一个**「简单的网页爬虫,并自动总结」**的工作流。
同样的,创建一个「工作流」应用。
下面是一个简单的网页爬虫工作流,支持输入一个关键词,并通过网页爬虫爬取相应的信息,然后使用大模型进行总结。
点击运行,输入提示词:「介绍一下Transformer的原理」,可以看到工作流自动运行就输出了结果。工作流中包含了很多好用的组件,感兴趣的可以自己探索。
4.5 【应用3】知识库
前面提到的无论是智能体,还是工作流,都具备调用知识库的能力。知识库可以理解为大模型的一个外置存储,里面会包含一些私域知识,能够让大模型在不进行微调训练的情况下,解决其在特定领域的幻觉问题。
可以在整个页面的顶部创建知识库:
在具体的知识库页面,可以选择上传文本、从Notion同步内容、从Web站点同步内容
创建完知识库之后,就可以在应用中使用了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。