“模态融合是多模态大模型的核心”
随着大模型的发展,大模型从单模态发展到现在的多模态,为什么发展多模态大模型在之前的文章中有过描述,这里就不在详细介绍了。
今天主要说的是多模态大模型的一个更加具体的东西,多模态融合技术。
多模态融合技术的难点及注意点
多模态融合是结合不同类型的数据(如图像,文本,音视频等)以提高模型等理解和生成能力的一种技术。然而,这一过程中充满了困难与挑战,以下是多模态融合中常见的难点及注意点,以及应对这些挑战的建议:
模态之间的不一致性
难点
-
数据特征差异:不同模态的数据有不同的特征维度和表示方式;例如,图像是高纬的像素值,而文本是离散的词向量。
-
尺度差异:不同模态的数据在数量和尺度上可能有所不同,这可能导致融合时的不均衡问题。
_注意点及建议_
-
标准化:在融合之前,对不同模态的数据进行标准化和归一化处理
-
对齐:使用对齐方法(如时间对齐,空间对象)确保不同模态数据的同步性
-
特征映射:将不同的模态的特征映射到相同的空间中,通过嵌入层或映射层进行转换
信息融合的复杂性
难__点
-
信息冗余与丢失:不同模态的数据可能包含冗余信息或丢失关键信息,需要有效融合以避免信息丢失
-
融合策略的选择:选择合适的融合策略(如早期融合,晚期融合,中期融合)对结果影响很大,不同的任务可能需要不同的策略
_注意点及建议_
-
融合层设计:在设计融合层时,考虑使用注意力机制,加权融合等技术来动态调整模态的重要性
-
实验和验证:进行大量实验以确定最适合特定任务的融合策略,并在不同策略下验证模型性能
数据对齐与一致性
难点
- 异步数据:不同模态的数据可能在时间上不对齐,例如视频和语音数据
不一致的数据格式:例如,图像数据可能是二维的,而文本数据是线性的
_注意点与建议_
-
对齐技术:使用时序对齐法(如插值,滑动窗口)处理时间序列数据的不对齐问题
-
数据预处理:对不同模态的数据进行预处理,如裁剪,缩放,平滑等,以保持一致性
计算资源与效率
难点
-
高计算复杂度:多模态融合通常需要处理高维数据和复杂的计算,导致高计算需求
-
内存管理:大规模的数据和模型可能导致内存使用过高,影响训练和推理效率
_注意点及建议_
-
模型优化:使用模型压缩,剪枝,量化等技术减少计算和内存开销
-
分布式计算:采用分布式计算框架(如TensorFlow和PyTorch分布式训练)提高计算效率
模态间的语义差异
难点
-
不同模态的语音信息:各模态可能表示不同的语义信息,融合时可能很难捕捉到模态间的复杂语义关系
-
语义映射:需要将不同模态的语义信息映射到一个共同的表示空间中
_注意点与建议_
-
词义嵌入:使用高质量的嵌入技术将不同模态的语义信息映射到一个共享空间中
-
跨模态学习:探索跨模态学习的方法,增强不同模态之间的语义关系学习
模型解释性
难点
-
黑箱问题:多模态融合模型的复杂性可能使得模型的决策过程难以理解
-
模型透明性:理解和解释多模态模型的输出需要额外的工作
_注意点及建议_
-
解释工具:使用可解释AI工具(如LIME,SHAP)来分析和解释模型的决策
-
可视****化:通过可视化技术展示模型对不同模态的关注区域和决策依据
数据隐私与伦理问题
_难点_
-
数据隐私: 不同模态的数据可能涉及敏感信息,数据融合可能引发隐私问题。
-
伦理问题: 在处理多模态数据时,必须遵守伦理规范,避免数据滥用
注意点及建议
-
隐私保护: 使用隐私保护技术(如差分隐私)确保数据处理过程中的隐私安全。
-
伦理审查: 在数据收集和使用过程中进行伦理审查,确保符合伦理和法律规范
文本类人工智能聊天机器人:
总结
多模态融合在实际应用中面临着多种挑战,包括模态之间的不一致性、信息融合的复杂性、数据对齐与一致性问题、计算资源与效率、语义差异、模型解释性以及数据隐私与伦理问题。解决这些挑战需要综合考虑不同模态的数据特性,设计合适的融合策略,优化计算效率,并确保数据处理的隐私和伦理合规。通过精心设计和优化,多模态融合可以显著提升模型的性能和实用性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。