在日常工作和学习中,我们时常会面对大量的PDF、Word、Excel等文档,需要从中查找特定的信息或内容。然而,传统的Ctrl+F搜索方式在面对海量文档或复杂格式时,往往效率低下,令人头疼。如果使用AnythingLLM 工具,它将彻底改变你处理文档的方式。
一、什么是AnythingLLM?
AnythingLLM是一个AI聊天系统,它允许用户构建自己的私人ChatGPT。与依赖云服务的AI工具不同,AnythingLLM支持本地开源和商用闭源的大语言模型(LLM),用户可以根据自己的需求和预算选择合适的模型。
二、AnythingLLM的核心功能
-
文档智能聊天:只需导入文档,AnythingLLM就能自动进行上下文分析和内容整理,用户可以通过对话的方式快速提取关键信息。
-
自定义AI代理:用户可以为每个工作区创建不同的AI代理,实现高度的定制化。例如,可以创建一个专门处理Python代码的AI代理,另一个则专门用于处理PDF文档。
-
多模式支持:无论是免费的开源模型还是付费的商用模型,AnythingLLM都能兼容,为用户提供极大的灵活性。
-
广泛的文档支持:从PDF、TXT到Word、Excel,几乎所有常见的文档格式都支持。
-
嵌入式聊天小部件:用户可以将AnythingLLM嵌入到自己的网站中,为网站用户提供自动化的智能客服服务。
-
团队协作支持:通过Docker容器,多个用户可以同时使用AnythingLLM,非常适合团队开发或公司内部使用。
-
丰富的API接口:开发者可以轻松集成AnythingLLM到现有的应用中,实现更多定制化功能。
三、AnythingLLM的安装与使用
安装AnythingLLM非常简单,官方文档详细明了,按照步骤操作即可。对于开发者来说,一条命令就能完成Docker部署,几分钟就能跑起来一个完整的私人ChatGPT系统。对于不太懂技术的小伙伴来说,也有详细的教程帮助上手。
使用上,用户只需通过拖拽的方式将文档放入工作区,然后就可以开始与文档“聊天”了。这个过程非常自然,就像与人对话一样,用户可以直接让AI分析提取重要内容,无需再翻阅大量文档或使用关键词搜索。
四、AnythingLLM的适用场景
-
个人学习助手:对于学生或知识工作者来说,AnythingLLM是强大的学习助手,可以帮助他们快速获取书籍、论文等学习资料中的信息。
-
企业文档管理:企业内部的文档种类繁多,通过AnythingLLM的工作区机制,企业可以分类管理文档,提升整体工作效率。
-
开发者定制应用:开发者可以利用AnythingLLM的API集成到现有系统中,打造符合自己需求的AI应用。
-
网站智能客服:对于需要客服支持的网站来说,可以将AnythingLLM嵌入网站中,为用户提供快速解答。
实践
采用 AnythingLLM与Ollama 结合使用的方式,快速搭建本地AI
接下来仅讲解一下如何安装 AnythingLLM 以及配置
安装并配置AnythingLLM
-
访问AnythingLLM官网,下载适合自己操作系统的安装包。
-
按照安装向导完成安装,并打开AnythingLLM应用程序。
-
在AnythingLLM中,点击左下角的“设置图标”。
-
在人工智能提供商>LLM 首选项中,选择Ollama作为LLM提供者。
-
URL填写Ollama的默认地址(如http://127.0.0.1:11434)。
-
选择已经下载并运行的Ollama模型(如qwen)。
-
其他设置如Embedding Preference等,根据需要进行配置。
使用AnythingLLM与Ollama进行对话和文档处理
-
在AnythingLLM中,新建一个工作区。
-
将需要处理的文档拖拽到工作区中。
-
开始与文档进行对话,AnythingLLM将利用Ollama提供的LLM能力进行智能分析和回答。
注意事项
-
资源要求:运行大型语言模型需要一定的内存或显存。请确保您的计算机满足Ollama和所选模型的资源要求。
-
网络问题:在下载模型时,可能会遇到网络问题导致下载速度缓慢或失败。此时可以尝试重启电脑或重启Ollama服务来解决问题。
-
模型选择:根据自己的需求和预算选择合适的模型。免费的开源模型可能适合个人学习或小型项目,而付费的商用模型则可能提供更高的性能和准确性。
通过以上步骤,您可以将AnythingLLM与Ollama成功结合,并利用这一强大的组合进行智能对话和文档处理。无论是个人学习还是企业团队协作,这一解决方案都将为您提供极大的便利和效率提升。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。