AnythingLLM教程系列之 11 AnythingLLM+Ollama:将所有 LLM Runner 和所有大型语言模型整合在一起,支持的 LLM、嵌入模型、语音模型和矢量数据库

简介

AnythingLLM 是一个全栈应用程序,您可以使用商用现成的 LLM 或流行的开源 LLM 和 vectorDB 解决方案来构建一个私人 ChatGPT,没有任何妥协,您可以在本地运行也可以远程托管,并且能够与您提供的任何文档进行智能聊天。

AnythingLLM 将您的文档划分为称为工作区的对象。工作区的功能与线程非常相似,但增加了文档的容器化。工作区可以共享文档,但它们不会相互通信,因此您可以保持每个工作区的上下文清晰。

系列文章

如何安装

系列文章

### 在Java项目中嵌入使用大模型的方法 在大模型时代,Java程序员同样可以利用多种工具技术来集成使用大模型。以下是一些方法教程,帮助开发者将大模型嵌入到Java项目中。 #### 1. 使用LangChain4j LangChain4j 是一个专门为Java开发者设计的框架,融合了LangChain、Haystack、LlamaIndex等项目的理念[^1]。它支持多种LLM提供商嵌入向量存储,为Java开发者提供了一个强大且灵活的工具箱。以下是使用LangChain4j的基本步骤: - **引入依赖**:在`pom.xml`文件中添加LangChain4j的依赖。 ```xml <dependency> <groupId>io.langchain</groupId> <artifactId>langchain4j</artifactId> <version>0.0.1-SNAPSHOT</version> </dependency> ``` - **初始化模型**:通过LangChain4j提供的API加载预训练模型。 ```java import io.langchain4j.LLM; import io.langchain4j.llm.openai.OpenAI; public class LangChainExample { public static void main(String[] args) { LLM llm = OpenAI.builder().apiKey("your-api-key").build(); String result = llm.generate("What is the capital of France?"); System.out.println(result); } } ``` #### 2. 调用Python服务接口 尽管Java可以直接加载模型,但有时调用Python服务可能更高效。通过HTTP请求或gRPC协议,Java程序可以与Python后端交互[^2]。 - **使用HttpClient发送请求**: ```java import java.net.URI; import java.net.http.HttpClient; import java.net.http.HttpRequest; import java.net.http.HttpResponse; public class PythonServiceExample { public static void main(String[] args) throws Exception { HttpClient client = HttpClient.newHttpClient(); HttpRequest request = HttpRequest.newBuilder() .uri(URI.create("http://localhost:5000/predict")) .header("Content-Type", "application/json") .POST(HttpRequest.BodyPublishers.ofString("{\"input\": \"Hello\"}")) .build(); HttpResponse<String> response = client.send(request, HttpResponse.BodyHandlers.ofString()); System.out.println(response.body()); } } ``` #### 3. 直接加载模型 对于轻量级场景,可以直接在Java中加载模型。这需要借助一些跨语言库,例如TensorFlow Java API或ONNX Runtime for Java[^3]。 - **使用TensorFlow Java API**: ```java import org.tensorflow.Graph; import org.tensorflow.Session; import org.tensorflow.Tensor; public class TensorFlowExample { public static void main(String[] args) { try (Graph graph = new Graph()) { graph.importGraphDef(/* load your model here */); try (Session session = new Session(graph)) { Tensor<?> input = Tensor.create(/* your input data */); Tensor<?> output = session.runner().feed("input", input).fetch("output").run().get(0); System.out.println(output.toString()); } } } } ``` #### 4. 嵌入资源 如果需要将模型文件嵌入到Java项目中,可以将其作为资源文件打包到JAR文件中[^5]。 - **加载嵌入资源**: ```java import java.io.InputStream; public class ResourceExample { public static void main(String[] args) { InputStream inputStream = ResourceExample.class.getResourceAsStream("/model/model.pb"); if (inputStream != null) { // Process the model file } else { System.out.println("Model file not found!"); } } } ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值