机器人迈向ChatGPT时刻!清华团队首次发现具身智能Scaling Laws

想象这样一个场景:你正在火锅店和朋友畅聊,一个机器人熟练地为你倒饮料、端菜,完全不需要你分心招呼服务员。这个听起来像科幻的场景,已经被清华大学交叉信息院的研究者们变成了现实!他们发现了具身智能领域的 “圣杯”——data scaling laws,让机器人实现了真正的零样本泛化,可以无需任何微调就能泛化到全新的场景和物体。这一突破性发现,很可能成为机器人领域的 “ChatGPT 时刻”,彻底改变我们开发通用机器人的方式!

从火锅店到电梯,机器人展现惊人泛化力

研究团队可不是只在实验室里玩玩具。他们把机器人带到了各种真实场景:火锅店、咖啡厅、公园、喷泉旁,甚至是电梯里。更令人震惊的是,机器人在这些前所未见的环境中都展现出了超强的适应能力!

为了确保研究的可复现性,团队慷慨地开源了所有资源,包括耗时半年收集的海量人类演示数据:

  • 论文标题:Data Scaling Laws in Imitation Learning for Robotic Manipulation

  • 论文链接:https://arxiv.org/abs/2410.18647

  • 项目主页:https://data-scaling-laws.github.io/

连 Google DeepMind 的机器人专家 Ted Xiao 都忍不住为这项研究点赞,称其对机器人大模型时代具有里程碑意义!

Scaling Laws:从 ChatGPT 到机器人的制胜法则

还记得 ChatGPT 为什么能横空出世吗?答案就是 scaling laws!现在,清华团队首次证明:这个法则在机器人领域同样适用。事实上,真正的 scaling laws 包含数据、模型和算力三个维度,而本研究重点突破了最基础也最关键的数据维度。

研究团队使用便携式手持夹爪 UMI,在真实环境中收集了超过 4 万条人类演示数据。他们采用最新的 Diffusion Policy 方法从这些数据中学习机器人控制模型,并通过惊人的 15000 + 次实机测试进行严谨评估,最终发现了三个革命性的幂律关系:

  • 模型对新物体的泛化能力与训练「物体」数量呈幂律关系。

  • 模型对新环境的泛化能力与训练「环境」数量呈幂律关系。

  • 模型对环境 - 物体组合的泛化能力与训练「环境 - 物体对」的数量呈幂律关系。

这意味着什么?简单说:只要有足够的数据,机器人就能像 ChatGPT 理解语言一样,自然地理解和适应物理世界!这一发现不仅证实了机器人领域与语言模型存在惊人的相似性,更为预测数据规模与模型性能的关系提供了坚实的理论基础。

颠覆性发现:数据收集原来要这么做!

研究团队还破解了一个困扰业界的难题:对于给定的操作任务,如何优化选择环境数量、物体数量和每个物体的演示次数?

经过大量实验,他们得出了两个出人意料的结论:

1. 当环境数量足够多时,在单一环境中收集多个不同的操作物体的数据收益极其有限 —— 换句话说,每个环境只需要一个操作物体的数据就够了。

2. 单个物体的演示数据很容易达到饱和 —— 在倒水和摆放鼠标等任务中,总演示数据达到 800 次时,性能就开始趋于稳定。因此,每个物体 50 次示范基本就能搞定。

为验证这个策略,团队找来 4 个人,只花了一个下午就收集到了训练数据。结果令人震惊:在 8 个全新场景中,机器人成功率高达 90%!这意味着,原本可能需要几个月的数据收集工作,现在可能只需要几天就能完成!

模型规模化探索的意外发现

除了数据规模,研究团队还在模型规模化方面有三个重要发现:

  • 视觉编码器必须经过预训练和完整的微调,缺一不可

  • 扩大视觉编码器的规模能显著提升性能

  • 最令人意外的是:扩大扩散模型的规模却没能带来明显的性能提升,这一现象还值得深入研究

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值