周末,huggingface、meta、amd 均开源了SLM, 最优秀的是huggingface家的smolLm2,同规模能打过qwen2.5、llama3.2
AMD-OLMO系列
- hf: https://huggingface.co/collections/amd/amd-olmo-6723e7d04a49116d8ec95070
OLMO 完全开源系列,AMD-OLMo 是由 AMD 在 AMD Instinct™ MI250 GPU 上从头开始训练的 1B 语言模型系列。所使用的训练代码基于 OLMo。发布了预训练模型、监督微调模型和 DPO 对齐模型,具体如下:
-
AMD-OLMo-1B:在 Dolma v1.7 的一个子集上预训练,该子集包含 1.3 T token。
-
AMD-OLMo-1B-SFT:在 Tulu V2 数据集上进行监督微调(第一阶段),然后在 OpenHermes-2.5、WebInstructSub 和 Code-Feedback 数据集上进行(第二阶段)。
-
AMD-OLMo-1B-SFT-DPO:在 UltraFeedback 数据集上使用直接偏好优化(DPO)与人类偏好对齐。
具体效果不贴了,OLMO系列的模型对标的是tinyllama这些
Huggingface-SmolLM2系列
- hf: https://huggingface.co/collections/HuggingFaceTB/smollm2-6723884218bcda64b34d7db9
SmolLM2 是一款紧凑型语言模型家族,提供三种规模:135M, 360M,1.7B参数。它们能够解决各种任务,同时足够轻量,可在设备上运行。
1.7B 版本在指令遵循、知识、推理和数学方面相较于其前身 SmolLM1-1.7B 取得了显著进步。它使用了 11T 标记进行训练,数据集组合包括 FineWeb-Edu、DCLM、The Stack,以及我们精心制作的新的数学和编码数据集,这些数据集将很快发布。我们通过使用公共数据集和自制的精心制作的数据集进行监督微调(SFT)来开发指令版本。然后,我们应用了直接偏好优化(DPO)和 UltraFeedback。
效果:
Meta-MobileLM系列
-
hf: https://huggingface.co/collections/facebook/mobilellm-6722be18cb86c20ebe113e95
-
paper: https://arxiv.org/pdf/2402.14905
MobileLLM 是一种自回归语言模型,它利用优化的 Transformer 架构,专门为资源受限的设备应用而设计。MobileLLM 集成了多项关键技术,包括:(1) SwiGLU activation function, (2) deep and thin architectures, (3) embedding sharing, (4) grouped-query attention. 。MobileLLM-125M/350M 在零样本常识推理任务上,相较于之前的 125M/350M SoTA 模型,实现了 2.7%/4.3% 的准确率提升。在我们的更新版本中,我们进一步证明了我们的设计理念能够有效扩展到更大的模型,MobileLLM-600M/1B/1.5B 模型取得了 SoTA 结果。
这里对比的也是一些老模型,训练耗时如下:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。