业务架构为IT架构设计提供需求来源。
IT架构通过优化应用、数据和技术,实现业务能力的数字化支撑。
架构治理通过标准化流程和持续改进机制,确保架构变更和演进的高效性和方向性。
一、业务架构:从业务需求到能力识别,奠定数字化转型方向。
1. 业务组件分析与战略梳理
明确业务热点与核心能力:基于业务组件分析法,拆解企业业务模块,识别关键功能领域(如生产、供应链、客户服务等)的热点问题和改进方向。
与战略目标对齐:通过战略分析,将企业长期目标与业务能力需求映射,确保业务架构设计服务于核心业务目标(例如提升客户满意度或优化运营效率)。
2. 部门访谈与能力识别
深入了解业务痛点:与各业务部门开展多轮次访谈,挖掘操作流程中的潜在障碍,例如跨部门协作低效或数据共享不畅。
高阶需求识别:根据访谈结果,提炼对业务未来发展有推动作用的高阶需求,例如数据驱动决策能力或自动化流程能力。
二、IT架构:结合现状分析与系统优化,提升架构成熟度。
1. 应用架构:关注系统覆盖与整合
现状调研:分析现有IT系统对业务组件的覆盖情况,识别以下问题:
功能重叠:不同系统实现相似功能,造成资源浪费。
系统孤岛:某些系统未实现数据互通,影响整体效率。
问题分析与优化:根据调研结果提出优化方向,例如整合重复的应用系统、提升应用间的数据流通效率。
2. 数据架构:从数据治理到资产利用,保障业务洞察。
现状问题诊断:
数据标准化不足:数据模型未统一,导致跨部门数据无法有效集成。
数据质量欠缺:数据冗余和缺失影响分析结果的准确性。
数据分类与治理:提出建立统一的数据治理框架,涵盖主数据管理、元数据管理,以及数据生命周期管理(从收集到存储、处理、归档)。
3. 技术架构:夯实支撑系统的基础设施能力
现状调研与瓶颈分析:
硬件性能不足:部分IT基础设施无法满足业务增长需求。
技术更新滞后:关键技术(如虚拟化、云服务)未有效应用。
优化路径:提出技术架构的升级策略,例如云原生技术引入、存储和网络性能的提升。
三、架构治理:建立标准化治理体系,实现闭环管理。
1. IT管控现状分析
现有架构治理缺陷:
缺乏清晰的治理规则和流程,导致架构变更效率低。
没有有效的决策机制,项目优先级安排混乱。
治理改进方向:明确职责分工,形成从变更申请到实施、评估的完整流程,建立以决策效率和执行力为导向的治理体系。
2. 借鉴行业最佳实践
对标领先企业:学习行业标杆企业的数据分类与架构设计经验,例如应用分级治理机制或动态调整的治理模式。
参考架构标准:应用TOGAF(The Open Group Architecture Framework)等架构框架,确保治理方法有理论依据。
3. 关键问题与进阶方向
多架构协同:通过统一的架构设计管理平台,实现业务架构、IT架构(包括应用、数据和技术)以及架构治理之间的协同。
持续迭代优化:在治理过程中,结合动态评估结果,调整架构以应对新兴需求。
三、119页某银行架构优化PPT案例赏析
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。