2024腾讯MPT-Rec框架,解锁推荐系统中高效多任务学习

Introduction

多任务学习(MTL)同时优化不同任务以利用其他任务的信息。与转移学习不同,MTL的目标是同时优化所有任务。现有研究主要致力于设计知识共享机制以避免负迁移。我们研究发现并非所有新任务都能提升整体性能。为解决泛化能力问题和降低训练成本,我们设计了MPT-Rec框架,通过两阶段学习:多任务预训练和多任务提示调优,以避免新任务负迁移并加快训练过程。我们提出的MPT-Rec框架解决了多任务学习中新任务的负迁移和高成本训练问题。

Methodology

The General Framework

MPT-Rec 包含两个组件:多任务预训练组件和多任务提示调优组件。

在这里插入图片描述

我们采用多任务预训练来获取高度表达性的任务共享知识,以确保 MPT-Rec 在现有任务上的预测性能。通过固定预训练任务的参数,我们提升了训练效率并在新任务的学习性能上进一步提升。

Multi-Task Pre-training

多任务预训练阶段旨在提升现有任务性能并提取可转移知识,以促进新任务泛化,包括信息解耦和信息融合。

Learning Disentangled Information

为了避免任务间的负迁移,我们使用GAN结合专家来分别学习任务共享和任务特定信息。生成器生成不含任务特定信息的表示,以欺骗判别器,判别器确定任务标签。任务共享表示通过任务分类器学习,确保高质量转移。给定输入特征 ,稀疏嵌入网络学习输入向量 。任务共享表示 和任务特定表示 分别由专家网络中的函数 生成,其中 是一个两层MLP。生成对抗网络的训练损失包括预测损失 和任务标签预测损失 ,最终优化损失由这两个损失加权组成,定义为:

其中 是一个用于平衡两个损失函数的权重系数,用于调整预测损失和任务标签预测损失之间的比例, 是任务的数量。

Learning Fusion Information

在生成对抗网络中分离任务共享信息和任务特定信息后,我们设计了一个融合网络将它们结合起来进行最终预测。具体地,我们为每个任务分配一个任务嵌入来指导融合过程。任务感知表示 为:

其中 是任务特定表示, 是任务嵌入,且 是元素-wise 乘积。

随后,我们使用门控网络通过加权和的方式结合任务共享和任务感知表示,融合表示 为:

其中权重系数 和 由门控网络自动计算。

融合表示通过上塔网络进行传递,用于任务预测,所有任务的预测损失 为:

整体损失定义为:

多任务预训练组件通过每个任务的塔网络实现初始分离,并随后进行融合,显著减少了负迁移的问题。

Multi-Task Prompt-tuning

多任务提示调优阶段旨在利用现有知识加快新任务训练,特别适合需要频繁优化推荐任务的业务场景。我们提出了一种任务感知的提示调优方法,通过任务嵌入从其他任务中提取有用信息,在多任务预训练阶段结合训练良好的任务特定表示,以提高新任务的训练效率。

Task-Specific Information Transfer

给定任务 ,其权重 计算为:

其中 是一个两层的 MLP,,, 是 softmax 温度。

新任务的新表示 定义为一个 维向量,通过以下公式计算:

Task-Aware Prompt Tuning

我们融合任务特定表示 与新任务嵌入 生成具有任务意识的表示 ,然后将任务共享表示 与具有任务意识的表示 结合,用于新任务预测。表示定义为:

新任务优化公式为:

其中, 是基于 的 Sigmoid 预测。

Efficiency Analysis

得益于多任务预训练,我们的框架消除了对高维输入原始特征的稀疏嵌入网络I 的必要性,仅在提示调优过程中需要学习一个小规模的投影网络和塔网络,并新增任务嵌入。这种方法使MPT-Rec能够快速适应新任务,并通过任务嵌入引导权重学习,转移有用知识。多任务提示调优确保MPT-Rec在最少资源成本下对新任务具有预测能力。

EXPERIMENTS

Datasets

我们使用三个数据集进行实验,包括Census-income(T1预测收入是否超过50,000美元,T2预测婚姻状况)、Ali-CCP(T1预测点击率(CTR),T2评估模型性能)、ByteRec(T1预测用户是否完成观看视频,T2预测用户是否喜欢视频)。

在这里插入图片描述

Results of Multi-Task Learning

三个数据集的结果如表所示。

在这里插入图片描述

所有任务都是二分类,AUC是评估指标。我们观察到:

  1. 多任务模型通常优于单任务模型,除了Byte-Rec中的T2,这表明任务之间的知识传递有所改善。

  2. 共享底层模型表现最差,而MMOE和PLE由于其门控过滤有用信息的机制,表现更好。

  3. STEM在不同数据集上的表现差异较大;它在Byte-Rec T2中表现出色,但在Census-income中表现不佳,显示出对负迁移处理不佳。

  4. 稀疏共享和CSRec学习不同的子网络结构,允许在更少参数下获得更好性能。CSRec使用对比学习解决参数冲突。

  5. MPT-Rec在所有数据集上表现最佳,使用GANs更有效地限制与任务无关的信息传递。

论文:https://arxiv.org/pdf/2408.17214

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值