CCIIP实验室23级博士生潘为燃同学(导师:魏巍)的论文 “Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data”,23级研究生徐名韬同学(导师:魏巍)的论文 “Semantic Enhanced Heterogeneous Hypergraph Network for Collaborative Filtering”;以及24级研究生周为同学(导师:魏巍)的论文 “Editing Memories Through Few Targeted Neurons” 被国际人工智能顶会(AAAI 2025)长文全文录用。第39届美国人工智能年会(AAAI 2025)计划于2025年2月25日-3月4日在美国宾夕法尼亚州费城召开。AAAI是中国计算机学会CCF推荐的A类国际学术会议,在人工智能及自然语言处理领域享有较高学术声誉。这次会议共收到破纪录的12,957篇有效投稿,录用率约23.4%。
论文介绍
1.论文标题:Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data(AAAI 2025)
论文概述: 在带噪学习(Learning with Noisy Labels,LNL)领域,现有样本选择方法通常将具有较小损失的样本视为正确标记的样本。然后,部分正确标记的样本存在固有学习难度,导致其在训练早期可能会表现出与错误标记样本类似的高损失现象。因此,仅依赖样本损失大小设置阈值选择样本,通常难以在精度和召回率之间达到平衡,即:阈值较低可能导致大量难以学习的正确标记样本被遗漏(低召回率),而阈值较高则可能导致大量错误错误标记样本被选中(低精度)。针对该问题,我们提出了一种基于置信度趋势跟踪的样本选择方法(Confidence Tracking, CT)。CT通过跟踪模型在训练过程中对注释标签与其他类别之间的置信度差距的变化趋势,并利用Mann-Kendall检验其增长趋势作为评估标准,以区分正确标记的难学样本与错误标记样本。若所有置信度差距均呈上升趋势,则判定该样本可能被正确标记。论文进一步从梯度一致性角度分析了为何正确标记样本和误标记样本会展现不同的training dynamics。实验结果表明,作为一种即插即用的组件,CT可以无缝结合现有样本选择方法,在保持精度的同时显著提高召回率。实验结果显示CT在多种类型的合成噪声标签(如对称噪声、非对称噪声、实例相关噪声)以及真实世界噪声数据集(如CIFARN、WebVision、Food-101N)上均显著提升了现有LNL方法的性能,展现出较强的泛化能力和适用性。
图1. 样本选择示例:左侧展示的是由现有样本选择方法(GMM)与结合提出方法(GMM+CT)均能选出的干净样本;右侧展示的是结合提出方法后(GMM+CT)才能选出的干净样本,样本内容相较左侧更加多样化,展现了CT在挖掘困难样本上的优势。
2.论文标题:Editing Memories Through Few Targeted Neurons(AAAI 2025)
论文概述: 当前模型知识编辑(Model Editing)方法主要分为冻结模型参数与直接编辑模型参数两类,其中基于微调(fine-tuning-based)的方法虽然可以有效编辑模型知识,但往往存在以下问题:(1)显示控制编辑局部性(对无关知识的影响)的方法有限,导致现有编辑方法往往难以有效平衡编辑的泛化性(对相关知识的修改)和局部性;(2)缺乏对具有知识的神经元与模型参数间的定性分析,导致模型编辑的效果较差。为了解决上述问题,我们提出了一种基于数据增强的目标神经元编辑方法(TNF-DA),通过因果介质分析(causal mediation analysis)定位与给定知识强相关的神经元(实验显示仅占1%左右),实验表明具有相同或相似关系表征的知识的强相关神经元集合具有高重叠性,因此考虑对待编辑知识的关系表征进行数据增强,以保证对特定知识的编辑仅影响强相关神经元,但不会传递到与该知识具有相同或相似关系表征的其他无关知识,从而有效构建高效的编辑训练集来指导神经元微调。实验结果表明,TNF-DA在Counterfact标准模型编辑数据集上表现优异,相比传统微调范式编辑方法不仅在编辑精度上取得了显著提升,同时有效缓解了过拟合问题,表现出强大的知识编辑能力与实际应用潜力。
图2. TNF-DA模型框架图
3.论文标题:Semantic Enhanced Heterogeneous Hypergraph Network for Collaborative Filtering(AAAI 2025)
论文概述: 目前,主流方法主要基于图神经网络(GNN)的协同过滤(CF)方法通过隐式反馈方式捕获高阶依赖关系,然后其缺乏对文本语义的理解能力。近期,大型语言模型(LLM)展现了强大的文本理解能力,因此很多研究学者开始关注如何利用LLM能力辅助推荐系统能够在协同信号中加入语义信息。然而,仅依赖LLM仅能识别实体间依赖关系,其相关语义信息无法保证与CF中协作/贡献关系表示的一致性,从而导致语义对齐时的退化现象。因此,我们提出了一种名为语义增强的异质超图网络(SEHHN)方法,旨在利用LLM提供的语义信息增强推荐中的协同与共现关系,为此我们设计了一种图自动编码器,用于实现用户-物品间双向关系对齐评论语义。同时为了挖掘潜在的共现信息,我们还构造了基于LLM的物品分类模型,用于自适应地提取物品共享特征,同时利用构建的异构超图网络,以实现多样化的用户-物品及关系表示用于与协同过滤信息融合。在三个真实数据集上的实验表明,所提SEHHN模型优于现有SOTA基线方法。
图3. SEHHN整体框架图
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。