vLLM vs TensorRT-LLM 性能对比测试,基于0910较新版本

vLLM 和 TensorRT-LLM 是我们熟知的大型语言模型(LLM)推理框架。**vLLM**[2] 是一个快速且易于使用的库,支持在多种设备上进行 LLM 推理和服务,包括 NVIDIA、AMD 和 Intel 的 GPU。相对地,**TensorRT-LLM**[3] 是一个高度优化的工具箱,专门为加速 NVIDIA GPU 上的推理性能而设计。两者都旨在最大限度地提高推理速度和资源利用率,同时尽量减少延迟。

本文直观比较了 vLLM 和 TensorRT-LLM。为了保证公平的评估,我们选择了一个常用的 LLM 模型和行业标准的 NVIDIA GPU:Llama-3-8BA100-SXM 80G GPU。我们使用了两者的默认设置进行评估,并探索了在特定实际场景下更优的配置。我们的目标是为实践者提供有价值的见解,以帮助他们为 LLM 部署策略选择最合适的解决方案。

前期准备

了解 LLM 服务中的关键指标

在这里插入图片描述

评估 LLM 性能的关键指标

评估 LLM 性能需要理解三个关键指标:吞吐量、首token响应时间(TTFT)和单token生成时间(TPOT)。各指标和相关参数如 图 1 所示。

吞吐量(Tokens/s)

• 吞吐量指系统在单位时间内生成的令牌数量。它通过生成的令牌总数除以总推理时间来计算。较高的吞吐量意味着系统可以高效处理大量请求,这对于实时应用和同时服务大量用户至关重要。

首token响应时间(TTFT,秒)

• TTFT 衡量从接收到请求到生成第一个令牌的延迟。该指标对用户体验至关重要,尤其是在需要即时反馈的交互式应用中。较低的 TTFT 表示初始响应更快,应用更具响应性。

单token生成时间(TPOT,毫秒)

• TPOT,也称为token间延迟(ITL),是生成每个后续token的平均时间。该指标反映了推理期间模型的token生成速度。较低的 TPOT 结果意味着更快且更流畅的token生成过程。

通过监控和优化吞吐量、TTFT 和 TPOT,实践者可以在模型部署、资源分配和系统配置方面做出更明智的决策。因此,我们在比较 vLLM 和 TensorRT-LLM 时重点关注这些性能指标。

实验设置

基准数据集

在所有实验中,我们使用了具有固定输入和输出长度的数据集,以确保两种框架处理的token数量一致。vLLM 和 TensorRT-LLM 都支持创建由随机token组成的固定长度数据集。在 vLLM 中,输入和输出长度直接提供给 benchmark_serving.py 脚本,而在 TensorRT-LLM 中,数据集通过 prepare_dataset.py 脚本生成。

框架版本

我们选择了能够成功完成基准测试的两个框架的最新版本。对于 vLLM,我们使用了 v0.6.1(commit 530821d0),对于 TensorRT-LLM,我们使用了 0.14.0dev2024091000,并使用了 C++ API。

模型和硬件

模型:Llama-3-8B(BF16)

硬件:NVIDIA A100-SXM 80G GPU

默认配置下的性能表现

工作负载:四个随机数据集,每个包含 4096 个样本,固定的输入和输出长度为:(128, 128)、(2048, 128)、(128, 2048)、(2048, 2048)

我们使用具有不同输入和输出长度组合的数据集对 vLLM 和 TensorRT-LLM 的默认设置进行了评估。为了防止内存相关的错误,最大序列长度设置为每个数据集的输入和输出长度之和,其他设置保持默认。

结果

在这里插入图片描述

Comparison of vLLM and TensorRT-LLM under default settings.

如 上图 图 2 所示,TensorRT-LLM 在所有指标上均表现优于 vLLM,特别是在输入和输出长度较短的数据集中,TensorRT-LLM 的 吞吐量 比 vLLM 高 1.34 倍。而在输入和输出长度较长的数据集中,TensorRT-LLM 在 TPOT 上表现出 2.72 倍 的提升。

不过,两种框架在 (2048, 128) 数据集 上的整体指标差异不大。因此,在接下来的部分中,我们重点关注这个数据集,详细探讨不同配置在实际场景中的性能表现。

最后,由于默认请求速率设置为无限,两种框架在 TTFT 方面表现出极高的数值。关于请求速率与 TTFT 的关系将在后续部分中详细讨论(见 图 5)。

场景1:TPOT 受限场景

在上一节中,我们比较了 vLLM 和 TensorRT-LLM 在默认配置下的性能表现。然而,在许多实际应用中,通常存在特定的服务要求。在这种情况下,默认配置可能不适用,需要进行额外的优化以满足要求。

在这个场景中,TPOT 是关键约束。TPOT 是与用户体验密切相关的指标,优化 TPOT 以加快令牌生成速度通常是 LLM 服务的优先事项(参见 Groq 的 800 token-per-second 演示[4])。场景1 的设置如下:

工作负载:随机数据集包含 4096 个样本,固定输入和输出长度为 (2048, 128)

要求:TPOT 必须小于 20ms

目标:最大化吞吐量

在场景#1 中,两种框架的默认配置都无法满足严格的 TPOT 约束,因此需要对默认设置进行调整。

TPOT 与批次大小

对于 vLLM 和 TensorRT-LLM,我们可以通过控制多种选项来最小化 TPOT。在所有选项中,我们选择控制 批次大小

批次大小 在平衡 TPOT吞吐量 中起着关键作用。较大的批次大小意味着推理负载更重,从而提高吞吐量,而较小的批次大小则会加快推理迭代(降低 TPOT)。

我们通过改变 vLLM 和 TensorRT-LLM 的最大批次大小进行了实验,其他框架设置与默认配置保持一致。该实验的目标是找到在满足 TPOT 约束的同时最大化吞吐量的最佳批次大小。

结果

‍vLLM 和 TensorRT-LLM 在不同 最大批次大小 选项下的比较。

图 3 显示 TensorRT-LLM 在所有批次大小下,TPOT 均略低于 vLLM。然而,随着最大批次大小的增加,两个框架的吞吐量饱和点显著不同,其中 TensorRT-LLM 的吞吐量明显高于 vLLM。

在严格 TPOT 约束(20ms)下 vLLM 和 TensorRT-LLM 的比较。此时仅允许使用较小的批次大小

相反,在施加严格的 20ms TPOT 约束时,吞吐量表现出了不同的趋势,此时只允许较小的批次大小。如 图 4 所示,最大批次大小为 4 是 vLLM 和 TensorRT-LLM 在该约束下的最佳选择。在这种情况下,vLLM 达到了 230 Tokens/s,优于 TensorRT-LLM 的 197 Tokens/s,因此在这一场景中,vLLM 表现更佳。

场景2:TTFT 受限场景

这次,我们假设有一个严格的 TTFT 约束。在实时交互任务中,例如聊天机器人或虚拟助手,用户期望得到即时反馈。较低的 TTFT 确保了快速响应,从而带来自然的对话流,而较高的 TTFT 则会使系统感觉缓慢且响应不及时。在本实验中,我们假设 TTFT 限制为小于 1 秒,目标是实现近乎即时的响应。

工作负载:随机数据集包含 512 个样本,固定输入和输出长度为 (2048, 128)

要求:TTFT 必须小于 1 秒

目标:最大化吞吐量

TTFT 与请求速率

图 5. TTFT 与请求速率的关系

图 5 解释了 TTFT请求速率 之间的密切关系。当请求速率较低时,每个请求在下一个请求到达之前完成,从而避免了排队。因此,TTFT 几乎与预填充阶段的延迟相同。然而,随着 请求速率的增加,处理时间超过了请求到达之间的间隔,从而导致 排队延迟 随着请求数量的增加而增加。

与此同时,vLLM 和 TensorRT-LLM 中的默认请求速率设置为无限,这意味着所有请求在基准测试开始时立即到达(见图 5c)。在这种情况下,后续请求的 TTFT 将极高,正如图 2 中的结果所解释的那样。

在本节中,我们尝试了不同的请求速率,找出在满足 TTFT 约束的情况下每个框架能够处理的最大请求速率。除请求速率外,框架的其他设置与默认配置相同。

结果

图 6. 在不同请求速率选项下 vLLM 和 TensorRT-LLM 的比较。

图 6 所示,TensorRT-LLM 在各种请求速率下的 TTFT 始终优于 vLLM。在 1 秒 TTFT 约束下,TensorRT-LLM 能够处理 6 个请求每秒,而 vLLM 则能处理最多 5 个请求每秒。TensorRT-LLM 在 6 个请求每秒时达到了 743.44 Tokens/s,而 vLLM 在 5 个请求每秒时达到了 638.94 Tokens/s。因此,TensorRT-LLM 在相同的 1 秒 TTFT 约束下实现了 16.4% 的吞吐量提升。

这种请求处理能力的差异在具有低 TTFT 要求和高请求速率的场景中可能对服务成本产生重大影响,因为 vLLM 需要额外的 GPU 资源来管理更高的负载,而 TensorRT-LLM 则能以更少的资源完成相同的任务。

最终思考

我们的评估表明,选择 vLLM 还是 TensorRT-LLM 很大程度上取决于具体的应用需求和操作约束。

需要注意的是,本文的实验有一些限制。首先,结果仅来自有限的环境(例如,默认配置或对单个参数的调整)。两种框架都有许多有用的功能,例如分块预填充(chunked prefill)和前缀缓存(prefix caching),它们可以改善所有三个指标。其次,数据集非常简单。所有样本长度相同,生成的输出数量也相同,因此无法充分利用 vLLM 和 TensorRT-LLM 的关键功能——Inflight Batching (also known as continuous batching, which is key feature of both vLLM and TensorRT-LLM。第三,未考虑并行性(如 TP 和 PP),因为所有基准测试都是在单个 A100 卡上完成的。

为了实现高效基准测试,我们使用了 FitsOnChips,一个支持不同框架的精确配置调整的 LLM 基准测试工具包FitsOnChips 允许对每个配置进行微调并可视化其对性能的影响,从而使基准测试过程更加高效和智能化。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值