“OpenAI的闭源多模态模型o1再次霸榜好久了,这使得开源界与闭源界之间的差距进一步拉大。**早期的开源视觉语言模型(VLM)主要采用直接预测方法,在回答问题时立即生成简短的答案。这种直接反应范式的主要局限性在于它缺乏结构化的推理过程,这使得它对需要逻辑推理的任务效率较低。大量的研究结果表明,**这些问题的一个重要原因是现有VLM中推理过程的系统性和结构化不足。具体来说,通过引用系统,该模型不生成直接的推理链,而是参与多阶段推理。另一方面,结构化是指模型能够清楚地识别它所处的推理阶段,并理解每个阶段要解决的主要任务。作者介绍了LLaVA-o1,这是一种用于进行自主多阶段推理的新型VLM。与思维链提示不同,LLaVA-o1能够独立地参与总结、视觉解释、逻辑推理和结论生成的连续阶段。它不仅在各种多模态推理基准上比其基础模型高出8.9%,而且还超过了更大甚至闭源模型的性能,如Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-VisionInstru ct。”
代码链接-https://github.com/PKU-YuanGroup/LLaVA-o1
论文链接-https://arxiv.org/pdf/2411.10440
01-LLaVA-o1背景简介
以OpenAI o1为代表的大型语言模型展示了强大的推理能力,这充分的验证了语言模型推理时间缩放的有效性。然而,视觉对于使模型能够充分理解世界并扩展其认知能力同等重要。因此,开发一个融合语言和视觉的多模态模型,同时促进其有效、系统和深入的推理,具有重要意义。
早期的开源视觉语言模型(VLM)主要采用直接预测方法,在回答问题时立即生成简短的答案。这种直接反应范式的主要局限性在于它缺乏结构化的推理过程,这使得它对需要逻辑推理的任务效率较低。近期的研究表明,结合思维链(CoT)推理可以鼓励模型逐步推理,显著提高其问答能力。然而,即使使用CoT推理,大多数VLM在推理过程中也经常产生错误或幻觉输出。
大量的研究结果表明,这些问题的一个重要原因是现有VLM中推理过程的系统性和结构化不足。具体来说,通过引用系统,该模型不生成直接的推理链,而是参与多阶段推理。另一方面,结构化是指模型能够清楚地识别它所处的推理阶段,并理解每个阶段要解决的主要任务。作者观察到,VLM经常在没有充分组织问题和可用信息的情况下发起响应。此外,它们经常偏离对结论的逻辑推理,而不是过早地提出结论并随后试图证明其合理性。鉴于语言模型会逐一生成响应,一旦引入错误的结论,模型通常会沿着有缺陷的推理路径继续。
02-LLaVA-o1算法简介
在这项工作中,作者介绍了LLaVA-o1,这是一种用于进行自主多阶段推理的新型VLM。与思维链提示不同,LLaVA-o1能够独立地参与总结、视觉解释、逻辑推理和结论生成的连续阶段。这种结构化方法使得LLaVA-o1能够在推理密集型任务的精度方面得到显著地提高。
为了实现这一点,作者收集了LLaVA-o1-100k数据集,整合了很多来自各种可视化问答源的样本,并提供了结构化的推理注释。此外,作者提出了一种推理时间级波束搜索方法,该方法能够实现有效的推理时间尺度。
值得注意的是,LLaVA-o1仅使用了10万个训练样本和一种简单而有效的推理时间缩放方法,它不仅在各种多模态推理基准上比其基础模型高出8.9%,而且还超过了更大甚至闭源模型的性能,如Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-VisionInstruct。
03-LLaVA-o1算法整体流程
上图展示了该算法的推理流程。利用Best-of-N搜索方法来生成N个完整响应,并从中选择一个最佳响应;句子级的束搜索为每个句子生成多个候选选项,并选择最佳选项。相比之下,作者提出的阶段级波束搜索能够为每个推理阶段(例如,摘要、标题、推理和结论)生成候选者,并在每个阶段选择最佳选项。Best-of-N搜索在粗略级别上运行,而句子级别的Beam搜索过于精细,该方法实现了最佳平衡并获得了最佳性能。具体的步骤如下所述:
-
步骤1–在第一阶段的解决方案种采样N个样本。
-
步骤2–随机抽取2个响应,让模型确定哪个更好,保持更好的响应。
-
步骤3–重复N-1次,保持最佳反应。
-
步骤4–对下一阶段的N个响应进行采样,然后重复步骤2-4,直到所有阶段都处理完毕。
04-LLaVA-o1算法实现细节
04.01-生成LLaVA-o1-100k的工作流
大多数现有的VQA数据集缺乏训练LLaVA-o1模型所需的详细推理过程。因此,作者收集了一个新的数据集,该数据集中整合了几个广泛使用的VQA数据集的样本,总共有99k个图像QA对(每对可能包括一轮或多轮提问)。
如上图所示,由于目前不存在可以直接产生系统、结构化推理的多模态模型,作者使用GPT-4o生成详细的推理过程,包括总结、标题、推理和结论,并将其编译成LLaVA-o1-100k数据集,作者计划后期发布该数据集,供大家一起使用。
04.02-阶段级的束搜索详解
作者在上图中提供了一个示例。当不应用推理时间缩放时,尽管模型生成了正确的推理步骤,但在推理过程中无法得出具体的答案。这会导致模型在结论阶段进行猜测,从而导致错误的结果。相比之下,通过推理时间缩放,模型保留了导致最终结果的推理步骤,确保了答案的正确性。
05-LLaVA-o1算法性能评估
05.01-主观效果性能评估
上图展示了基础的LIama-3.2-11B模型和LLaVA-o1在相同的输入问题上面的比较结果。通过观察与分析,我们可以发现:基础模型Llama-3.2-11B-VisionInstruct在推理过程中表现出明显的缺陷,在整个推理过程中出现了几个错误。相比之下,LLaVA-o1首先概述问题,解释图像中的相关信息,进行逐步推理过程,最终得出一个有充分支持的结论。
05.02-客观指标性能评估
上图展示了LLaVA-o1和其它模型在六个多模态推理基准上的性能表现。尽管LLaVA-o1是从Llama-3.2-11B-VisionInstruct模型(平均得分最低)微调而来的,但它的表现优于许多较大的开源模型,甚至超过一些闭源模型。
上表展示了不同的模型在多个评估基准上面的实验结果。这里,LLaVA-o1(带直接训练)是指直接在原始VQA数据集的问答对上训练的模型,而LLaVA-o1(不带结构化标签)表示在去除结构化标签的LLaVA-o-100k数据集上训练的模型。LLaVA-o1是指在完整的LLaVA-o1-100k数据集上训练的模型,包括结构化标签。
通过观察与分析,我们可以发现:LLaVA-o1在多个基准上面都超越了其它的基线算法,这充分的证实了其有效性。
如上表所示,作者在六个需要高级推理能力的基准测试中比较了LLaVA-o1与其它几个最先进的开源和闭源视觉语言模型(VLM):MMStar-R、MMBench-R、MMVet-R、MathVista、AI2D和HallusionBench。
通过观察与分析,我们可以发现:LLaVA-o1始终优于许多类似甚至更大尺寸的开源模型,如InternVL2-8B、Ovis1.5-Gemma29B、MiniCPM-V2.6-8B、Llama-3.2-90B-VisionInstruct和VILA-1.5-40B。值得注意的是,LLaVA-o1甚至超越了GPT-4o-mini和Gemini-1.5-pro等某些闭源模型,突显了该结构化推理方法的有效性。这种比较验证了该方法的优势,特别是在严重依赖推理技能的基准测试中,并强调了LLaVA-o1是推理密集型VLM任务领域的竞争模型。
06-LLaVA-o1算法效果展示
图6.1-LLaVA-o1算法效果展示1
图6.2-LLaVA-o1算法效果展示2
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。