英伟达老黄,成了今年的圣诞老黄。
AI芯片大礼包刚刚曝光:
GPU新核弹B300,以及附带CPU的超级芯片GB300。
高算力,在产品层面上相比B200在FLOPS上提高50%
大显存,从192GB提升到288GB,也是提高了50%。
△Grok AI绘图
包含72块GB300的“新一代计算单元**”GB300 NVL72**,更是被评价为“能让OpenAI o1/o3推理大模型的思维链长度,在高batch size下达到10万tokens的唯一方案”。
这与今年3月份“AI春晚”发布的B200系列只隔了几个月。
根据SemiAnalysis爆料,从第三季度开始,许多AI巨头已经将订单从B200转移到了B300(只有微软还在第四季度继续购买了部分B200)。
有不少网友感叹,更新速度实在太快了!
既是解决了此前传闻中B200因设计缺陷被迫推迟的问题,又是对隔壁AMD MI300系列后续产品将在2025年提升显存容量的回应。
又一款AI核弹
既然都是Blackwell架构没有跨代,B300的算力提高来自哪里呢?
根据这次爆料,主要有三部分:
-
工艺节点,与B200使用同样的台积电4NP,但是全新流片
-
增加功率,GB300和B300 HGX的TDP分别达到1.4KW、1.2KW,相比之下B200系列分别提高0.2KW
-
架构微创新,例如在CPU和GPU之间动态分配功率
除了更高FLOPS之外,B300系列的显存也做了升级:
-
从8层堆叠的HBM3E升级到12层(12-Hi HBM3E)
-
显存容量从192GB升级到288GB
-
显存带宽保持不变,仍为8TB/s
此外产品交付层面还有一个大变化:
GB200系列提供整个Bianca Board,也就包括两颗GPU、一颗CPU、CPU的内存等所有组件都集成在一块PCB版上。
△GB200概念图
GB300系列将只提供参考板(Reference Board),包括两颗B300 GPU、一颗Grace CPU、HMC(Hybrid Memory Cube),LPCAMM内存模块等组件将由客户自行采购。
这给供应链上的OEM和ODM制造商带来了新的机会。
为推理大模型打造
显存的升级对OpenAI o1/o3一类的推理大模型至关重要,因为推理思维链长度会增加KVCache,影响batch size和延迟。
以一个GB300 NVL72“计算单元”为单位考虑时,它使72个GPU能够以极低的延迟处理相同的问题,并共享显存。
在此基础上从GB200升级到GB300,还可以带来许多好处:
-
每个思维链的延迟更低
-
实现更长的思维链
-
降低推理成本
-
处理同一问题时,可以搜索更多样本,最终提高模型能力
为了解释这些提升,SemiAnalysis举了个更为直观的例子。
下图是在不同批处理大小下,使用H100和H200两种GPU处理长序列时,Llama 3.1 405B在FP8精度下的处理速度。
输入设置为1000个token、输出19000个token,由此模拟OpenAI o1和o3模型中的思维链。
从H100升级到H200,有两个显著改进。
一是在所有可比较的batch size中,H200的内存带宽更大(H200 4.8TB/s,H100 3.35TB/s),从而使得处理效率普遍提高了43%。
二是H200可运行更高的batch size,这使得其每秒可以生成的token数量增加了3倍,相应地,成本也减少了约3倍。
内存增加所带来的效益远不止表面上的这些。
众所周知,推理模型响应时间一般更长,显著缩短推理时间可以提高用户体验和使用频率。
而且内存升级实现3倍性能提升,成本减少3倍,这一提升速度也远超摩尔定律。
除此之外,SemiAnalysis还分析观察到,能力更强和具有明显差异化的模型能收取更高的溢价——
前沿模型毛利率超70%,而还在与开源模型竞争的次一级模型毛利率不足20%。
当然,英伟达并不是唯一一家能增加内存的芯片公司,但奈何英伟达还有杀手锏NVLink。
One More Thing
英伟达消费级显卡方面,RTX5090的PCB板也首次曝光了~
就在昨天,一张RTX 5090 PCB照片在网上疯转。
特点就是超超超大号。
结合此前爆料称5090有可能会配备32GB大显存,有望支持8K超高清游戏,实现60fps的流畅游戏体验。
网友们直接坐不住。
关于5090的发布时间,大伙儿猜测大概会是1月6日老黄CES演讲的时候。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。