普华永道 -- 主动式人工智能(Agentic AI):生成式人工智能的新边疆

在当前商业环境中,速度、效率和客户体验是决定市场领导地位的关键要素。人工智能(AI)作为推动创新的重要工具,已经在多个行业中发挥着巨大的影响力。生成式人工智能(GenAI)被认为是推动经济增长和产业变革的核心力量,预计到2030年,全球GDP每年将增长2.6万亿到4.4万亿美元。而在此背景下,主动式人工智能(Agentic AI)作为生成式人工智能的前沿应用,正在为企业带来前所未有的机会。

主动式人工智能(Agentic AI):生成式人工智能的新边疆

掌控人工智能:解锁前所未有的潜能

在一个以速度、效率和客户为中心决定市场领导地位的时代,企业必须充分利用所有可用工具。近年来,人工智能(AI)已经迅速席卷全球,企业与个人正积极快速地采用这一技术。海湾合作委员会 (GCC) 作为中东地区的重要经济体联盟,在这一领域扮演了领导角色,区域商业领袖正积极探索将这一快速发展的技术融入其运营的途径。

生成式人工智能(生成式人工智能)被视为推动该地区创新的重要变革力量,通过自动化日常任务、优化客户体验以及辅助关键决策流程,为企业赋能。根据我们第27届年度首席执行官调查:中东地区的调查结果显示,73%的中东地区首席执行官认为,在未来三年内,生成式人工智能将显著改变其公司价值的创造、交付和获取方式。生成式人工智能有望带来显著的经济影响,据估算,到2030年,可能每年为全球GDP贡献约2.6万亿美元至4.4万亿美元,影响涵盖多个行业。在特定领域,如能源行业,对生成式人工智能的投资预计将增长至原投资额的三倍,从2023年的400亿美元增至本世纪末的超过1400亿美元。这一投资激增彰显了生成式人工智能的深远变革潜力,尤其是在提升生产力、优化并简化业务流程,以及重塑各行业价值链方面。

在此背景下,多模态生成式人工智能 (GenAI) 主动式框架已成为变革推动力,推动企业以空前规模加速实现流程自动化。这项技术涉及多个智能体的协同工作,每个代理负责处理不同的任务或数据类型,以解决复杂问题并实现流程自动化。通过合作与持续学习,这些智能体能够提升决策能力、优化流程并推动创新。该框架融合了多种先进的人工智能技术,用于处理多样化的数据类型并自动化复杂任务。

核心问题不在于是否采用这项技术,而在于组织如何能快速整合这一技术以在竞争中获得领先地位。本高管指南探讨了组织如何利用这项技术提升运营效率、改善客户体验,并推动收入增长。它提供了跨行业领域和组织职能的实际成功案例、战略见解、具体实施蓝图以及最佳实践,旨在引导读者探索这一革命性领域。

关键洞察

  • 主动式人工智能,凭借其高度类人化的推理与交互能力,正在推动制造业、医疗、金融、零售、交通运输以及能源等领域的深刻变革。

  • 组织的人工智能战略应充分利用多模态生成式人工智能能力,同时确保具备保障AI伦理的措施,以实现自主流程重组并优化各业务领域的决策能力。

若整合得当,主动式人工智能能够提高效率、降低成本、优化客户体验,并促进收入增长。

主动式人工智能的定义

主动式人工智能通常指具有自主决策能力机制,并能够自主采取行动以实现特定目标的 AI 系统,这些行动需在有限或无需直接人工介入的情况下完成。

主动式人工智能的关键方面

自主性:主动式人工智能系统能够自主运行,根据其编程、学习及环境输入数据做出决策。

目标导向行为:这些 AI 智能体被设计为追求特定目标,优化其行为以实现预期目标。

环境交互:主动式人工智能(Agentic AI)通过与周围环境的交互来感知变化,并据此调整其策略。

学习能力:许多主动式人工智能系统采用机器学习(Machine Learning)或强化学习(Reinforcement Learning)技术,以逐步提升其性能。

工作流程优化:主动式智能体通过整合语言理解、推理、规划和决策能力,优化工作流程与业务流程。这包括优化资源分配、提升沟通与协作效率,以及识别实现自动化的潜在机会。

多智能体系统与对话:主动式人工智能支持不同智能体之间的沟通,从而构建复杂的工作流程。它还可以与其他系统或工具(例如电子邮件、代码执行工具或搜索引擎)进行集成,从而执行多种任务。

多模态生成式人工智能(GenAI)代理的演化

在人工智能领域,唯一不变的就是变化——因此需要始终拥抱持续创新的文化。
主动式框架的发展历程最初始于简单的基于规则的系统,这些系统被设计用于执行特定任务。随着技术的发展,这些系统逐步演变为复杂的多模态智能体,能够处理和整合来自多种来源的信息,例如文本、图像、音频等。多模态能力使人工智能(AI)代理具备如人类般的理解、推理与交互能力,从而进一步提升其解决多样化业务问题的效率与灵活性。

进化过程可以分为三个关键阶段:

(2000 年代)机器学习(ML)的引入
  • 基于数据的学习:机器学习的引入使智能代理能够从大型数据集中学习,从而提升其决策制定能力和任务执行能力。相比传统的基于规则的系统,这是一项显著的进步,因为智能体能够适应新的信息并随时间推移不断自我优化。

  • 自然语言处理 (NLP) 驱动的用户交互: 自然语言处理技术的发展使智能体能够更加高效地理解和生成自然语言,从而使交互更为自然直观。

(2010 年代) 多模态技术的引入
  • 结合文本、图像和音频: 多模态智能体逐步出现,能够处理并整合来自多种来源的异构信息。例如,这些智能体可以分析文本描述、识别图像中的目标并理解语音指令。这种多模态能力显著提升了智能体的多功能性,使其能够更好地处理复杂任务。

  • 增强的用户交互: 多模态智能体可以以更动态的方式与用户交互,例如针对文本查询提供视觉辅助,或通过综合语音与视觉输入来理解上下文。

2020年代至今:高级自主性和实时交互
  • 高级自主性:
    智能体能够自主运行、完成推理并设定自身目标,设计实现这些目标的路径,并在无需持续人类干预的前提下自主做出决策,同时利用多来源数据或合成数据集。

    在多智能体主动式人工智能编排系统中,第一组代理专注于模仿人类行为(例如,ChatGPT-4),通过快速思考提出解决方案的方法;而第二组智能体(例如,ChatGPT-1)则专注于缓慢推理,生成经过审慎推敲和验证的解决方案。

    结合快速与缓慢推理,智能体能够实时处理信息并做出最佳决策——这对于包括自动驾驶汽车、实时客户服务以及各种关键任务型业务流程在内的应用至关重要。这种自主性使主动式AI在动态复杂的现实环境中表现尤为强大。

  • 用户在符合伦理与负责任的人工智能控制环境中的交互
    随着系统能力的提升,人们愈发关注确保 主动式系统 能够在符合伦理且负责任的框架下运行,特别是针对偏见、透明性与问责制等方面的考虑。

为什么组织需要关注

在技术变革的快车道上,今天错过人工智能的转机,将意味着明天被同行超越
主动式人工智能(Agentic AI)在效率、决策制定和客户互动方面提供了显著的优势。主动式人工智能通过自动化常规任务并提供智能洞察,有助于组织节省时间、降低成本,提高整体生产力。此外,采用主动式人工智能系统的组织可以利用其创新能力,优化业务流程,进而获得竞争优势。相比于传统机器学习(ML)及基于机器人流程自动化(RPA)的自动化技术,主动式人工智能因较低的进入成本和规模经济效应,使组织能够更高效地发挥其功能优势。

主动式人工智能 (Agentic AI) 系统可以通过自动化复杂的工作流程、降低运营成本和优化决策流程,显著提升组织的竞争优势。这些系统通过适应不断变化的商业环境,推动生产力提升,从而帮助组织保持市场竞争力。例如,主动式 AI 可以预测市场趋势和客户偏好,使企业能够主动调整策略。这种适应性不仅提高了效率,还促进了创新,为企业带来明显的竞争优势。

此外,主动式人工智能系统能够处理海量数据并提取可执行洞察,这些洞察可用于优化运营并提升客户体验。通过实现日常任务的自动化,这些系统释放了人力资源,使其专注于更具战略意义的任务,从而提升组织整体的灵活性与响应能力。

决策制定能力的增强

主动式人工智能系统能够以快速和精准的方式分析大量数据,生成有价值的洞察,从而支持更高质量的决策制定。企业可以利用这些洞察来优化收益结构与运营效率,识别市场趋势,并实现基于数据驱动的决策制定。例如,在金融领域,人工智能可以分析市场数据以预测趋势、支持投资策略的制定,并提高投资回报水平。在零售业,通过预测需求及优化库存水平,可以实现库存管理的简化。

提升效率与生产力

主动式人工智能通过自动化常规任务和流程,能够显著提升企业效率与生产力。从而使员工能够专注于更具战略性与创造性的工作。例如,在客户服务领域,主动式人工智能能够处理常见的咨询问题,从而解放人类客服人员,用于应对更复杂的事务。在制造业中,由人工智能驱动的机器人能够以高度的精确性与一致性完成重复性任务,从而减少错误并提升产量。

改进的客户体验

通过整合 主动式AI,企业能够提供更个性化且响应更加迅速的客户体验。借助 AI 支持的聊天机器人和虚拟助手,企业可以即时提供支持、解答客户疑问,并根据客户偏好及动态交互进行产品推荐。这不仅提升了客户满意度与忠诚度,还进一步推动了销售增长。例如,电子商务平台通过利用 AI,根据用户的浏览历史和购买行为推荐相关产品。

未来业务运营中主动式人工智能解决方案的构想研究

主动式人工智能系统正在重新定义客户服务中心,其变革性功能正日益受到政府机构和私营部门组织的青睐。虽然基于规则的传统聊天机器人(软件即服务,SaaS)提供了基本的 24/7 支持,而采用 Retrieval Augmented Generated (RAG) 方法的聊天机器人显著增强了接近人类的交互能力(增强型软件即服务),然而,主动式人工智能在准确性、上下文连贯性和问题解决能力方面均超越了上述两类系统。

从准确性角度来看,基于规则的聊天机器人受限于预设的响应规则,当查询超出这些预定义规则时,通常可能导致不准确的回答。而基于 RAG 的聊天机器人依赖于检索到的数据,但这些数据可能无法完全匹配用户的真实意图。相比之下,主动式人工智能 的全新方法能够理解语言中的细微差异,即使在面对复杂或前所未见的查询时,依然能够生成高精确度的响应。其从海量数据中学习的能力进一步增强了系统的精确性和适应性,使其在客户交互场景中展现出更为明显的优势。

聊天机器人的主要限制之一是语境连贯性。基于规则的聊天机器人由于线性脚本的约束,在延续性的交互中难以保持语境一致性,导致回复不连贯,从而对客户体验造成负面影响。如果检索机制未考虑先前的交互,采用 RAG 技术的聊天机器人可能会产生缺乏一致性的回复。而主动式人工智能凭借其强大的调控能力,在跟踪对话历史、理解对话流程、确保回复能够在语境中保持适当性与连贯性方面表现出色,从而显著增强客户互动体验。

到目前为止,基于规则和基于 RAG(检索增强生成)的聊天机器人在自主问题解决能力方面仍然有限。前者无法处理超出其脚本范围的问题,而后者虽然能够提供信息,但无法综合数据并构建类似人类的逻辑,以解决横跨多个集成系统(如 CRM、ERP 或 IVR 系统)的复杂问题。

主动式人工智能(Agentic AI)则能够实现动态推理与决策。它通过一系列自主代理模块分析客户问题,综合多个因素,并利用学习到的知识,以更高效的方式解决问题。这使得对话更快速、更流畅,同时以解决方案为导向,从而提升客户体验,为自动化客户服务树立了效率与响应能力的新标杆。

主动式人工智能的商业需求

负责日常运营的组织可以通过主动式人工智能系统显著获益,拥抱新兴的“服务即软件(service-as-a-software)”模式。这种创新方法将传统的手工劳动转化为自动化且由人工智能驱动的服务。企业不再需要购买传统的软件许可证或订阅基于云的 SaaS(软件即服务),而是可以为AI智能体交付的具体成果付费。例如,一家公司可以使用像 Sierra 这样的人工智能客户支持代理在其网站上解决问题,并按每次解决的案例付费,而不再需要维持成本高昂的人类支持团队。这种模式使组织能够以极低的成本访问更广泛的服务——无论是由人工智能律师支持的法律服务、人工智能驱动的渗透测试服务进行的持续网络安全测试,还是自动化客户关系管理(CRM)系统的管理。这不仅显著提升了运营效率,还大幅减少了运营支出。

通过利用服务即软件模式,企业可以实现自动化处理曾经耗时、需要专业人员完成的日常任务,以及通常依赖昂贵软件许可或云解决方案的高度专业化工作。具备高级推理能力的 AI 应用如今能够处理复杂任务,从软件工程到客户服务中心的运营管理,从而使企业在成本不成比例增加的情况下实现运营规模的扩展。这一转变拓宽了适用于各种规模组织的服务范围,使其能够将注意力集中于战略优先事项,同时将运营负担交由 AI 系统管理。采用这些 AI 驱动的服务可以帮助企业在快速变化的市场中保持竞争力。

从副驾模式到自动驾驶模式的转变

软件即服务(Service-as-a-software)代表了一种以结果为导向的战略性转变,使组织能够从当前状态过渡到“副驾模式”(copilot mode),并最终实现“自动驾驶模式”(autopilot mode)。例如,Sierra 提供了一种保障机制,在客户问题过于复杂时,将任务升级至人工客服,从而保证客户体验的顺畅。虽然并非所有人工智能解决方案都具备这种内置的应急功能,一种常见的策略是初步将人工智能部署在“副驾模式”(copilot mode)下,与人工员工协作。这种人类介入流程(human-in-the-loop)的方法,有助于组织随着时间的推移对人工智能能力建立信任。随着人工智能系统逐步展现出其可靠性能,企业可以自信地过渡到“自动驾驶模式”(autopilot mode),在该模式下人工智能能够自主运行,从而提高效率并减少对人工监督的需求。GitHub Copilot 是上述转型过程的一个典型案例,它在协助开发者的同时,随着技术的不断发展,有望实现更多任务的自动化处理。这一从“副驾模式”到“自动驾驶模式”的过渡,反映了人工智能日益增强的自治能力。

通过 AI 服务外包工作

对于运营成本较高的组织而言,将特定任务外包给能够保证具体成果的 AI 服务,正成为一种日益具有吸引力的选择。例如,企业可以将 Sierra 集成到其客户支持系统中,以有效地管理客户查询。与支付软件许可费或云服务费不同,企业根据成功解决客户问题的数量向 Sierra 支付费用。这种成果导向的模型将成本与所实现的成果直接挂钩,使组织能够利用 AI 处理特定任务,并仅为达成的成果付费。

从传统软件许可证或云 SaaS 向服务即软件的转变在多个方面具有变革性:

  • 以服务利润为目标:传统 SaaS 专注于销售用户席位,而服务即软件则挖掘服务利润池,提供以特定业务成果为导向的解决方案。

  • 以成果为导向的定价:软件即服务采用以实际成果为导向的定价模式,而非按用户或席位收费,直接将成本与成果关联。

  • 高接触交付模式:软件即服务采用自上而下且高度个性化的解决方案提供方法,提供可信赖且量身定制的解决方案,以满足企业特定的运营需求。

为什么组织应考虑早期采用并避免后期跟进者?

在这里插入图片描述

真实案例解析

催化变革,覆盖各个行业

制造业:Siemens AG

Siemens 通过部署能够分析来自机器传感器数据的人工智能模型,显著优化了其维护运营。该系统可以在设备故障发生前预测故障,并提前安排维护。这一多模态框架能够处理来自振动、温度和声学信号等多种来源的数据,从而提供关于设备健康状态的全局视图,并通过主动式人工智能模型实现维护协调。

unsetunset技术栈unsetunset
  • 人工智能模型:回归模型和深度学习模型

  • 平台:Siemens MindSphere

  • 工具:Scikit-learn,TensorFlow,Keras,物联网传感器

unsetunset财务影响unsetunset
  • 节省:维护成本降低 20%

  • 收入增长:生产设备运行时间提升 15%

unsetunset非财务收益unsetunset
  • 增强设备的可靠性

  • 提升工人安全性

医疗保健:Mayo Clinic

通过在放射学工作流程中集成人工智能技术,Mayo Clinic 实现了更快、更准确的诊断。该多模态人工智能技术将医学影像数据与患者病史及实验室检验结果相结合处理,提供全面的见解,为放射科医生的决策提供支持。同时,在整个放射学价值链中实现了文档管理和流程的自动化。

unsetunset技术栈unsetunset
  • AI 模型:回归模型与卷积神经网络 (CNN) 模型

  • 框架:NVIDIA Clara 平台

  • 工具:Scikit-learn、PyTorch 和医学影像数据

unsetunset财务影响unsetunset
  • 效率提升:诊断时间缩短 30%

  • 成本降低:不必要的程序减少 15%

unsetunset非财务收益unsetunset
  • 提高诊断准确性

  • 改善患者治疗结果

金融: JPMorgan Chase

JPMorgan 的合同智能 (COiN) 平台通过 AI 分析法律文件,可在几秒钟内提取关键数据点。该多模态框架能够解析复杂的法律语言、图像和表格,简化过去需要耗费数千人小时的流程。

unsetunset技术架构unsetunset
  • AI 模型:NLP 使用 生成式预训练变换器 (GPT)

  • 技术框架:COiN 平台

  • 工具与技术:Python 和 Hadoop

unsetunset财务影响unsetunset
  • 时间节约:每年减少 360,000 小时的人工审查时间

  • 风险缓解:显著降低与合规相关的企业风险

unsetunset非财务收益unsetunset
  • 显著提升文档分析的精准度

  • 有效提升员工工作效率

零售行业案例分析:Amazon

Amazon 运用 AI 技术分析用户的浏览行为、购买历史,以及视觉偏好。多模态 AI 模型能够生成个性化推荐,协调订单履行价值链中的相关任务,并增强购物体验,从而有效推动销售增长。

unsetunset**技术栈:**unsetunset
  • AI 模型:回归算法模型与深度学习模型

  • 框架:Amazon Personalise(个性化服务平台)和 Amazon Order Fulfilment(订单履行框架)

  • 工具:AWS SageMaker

unsetunset**财务影响:**unsetunset
  • 销售收入的增长:通过个性化推荐和一键订单履行,销售额实现了 35% 的增长

  • 客户忠诚度:客户忠诚度提高了 20%

unsetunset**非财务收益:**unsetunset
  • 显著提升客户满意度

  • 平台用户互动时间显著延长

交通与物流:DHL

DHL 利用 AI 模型预测并协调运输需求,同时优化运输资源的调配、路线规划,并高效管理仓库运营。该系统能综合处理来自多种来源的数据,如交通模式、气象条件以及订单量。

unsetunset**技术架构:**unsetunset
  • 人工智能模型:机器学习模型以及路线优化算法

  • 框架:DHL 弹性供应链平台

  • 工具:IoT 设备和机器学习模型

unsetunset**财务影响:**unsetunset
  • 成本节约:使运营成本降低 15%

  • 效率提升:配送效率提升 20%

unsetunset**非财务收益:**unsetunset
  • 提高客户满意度

  • 降低碳排放影响

能源:BP 英国石油公司

BP 使用 人工智能 分析地震勘探数据,构建地下结构三维模型。该多模态方法结合地质、地球物理和历史数据,以识别优质钻探地点,并为钻井设备提供参数优化设置,从而实现优化钻探效果。

unsetunset**技术栈:**unsetunset
  • AI 模型:回归型 AI 模型和生成式人工智能 (GenAI) 模型

  • 框架:Azure 云服务框架

  • 工具:Microsoft AI

unsetunset**财务影响:**unsetunset
  • 成本节约:探索成本降低 20%

  • 收入增长:成功的钻探作业增加 15%

unsetunset**非财务收益:**unsetunset
  • 降低对环境的负面影响

  • 优化安全措施

教育领域案例分析:Pearson

Pearson 的 AI 模型旨在根据个体学习者的需求定制化教育内容,基于学习者的表现和参与度数据,动态调整难度级别及内容类型。

unsetunset**技术栈:**unsetunset
  • AI 模型:适应性学习算法

  • 框架:多模态内容传递系统

  • 工具:Python,TensorFlow

unsetunset**财务影响:**unsetunset
  • 收入提升:课程注册量增加了 25%

  • 成本削减:内容开发成本减少了 15%

unsetunset**非财务收益:**unsetunset
  • 提升学生学习成果

  • 提高用户参与度

媒体与娱乐:Netflix

Netflix 通过分析观看习惯、评分,甚至包括视觉内容的特征,利用 AI 模型推荐内容并智能化组织编排。多模态 AI 确保用户能够找到符合其偏好的内容,从而确保用户持续参与。

unsetunset**技术堆栈:**unsetunset
  • AI 模型:机器学习(ML)和生成式人工智能(生成式 AI)模型

  • 框架:Netflix 的多模态用户交互分析框架

  • 工具:AWS(亚马逊网络服务),Apache Spark(分布式计算框架)

unsetunset**财务影响:**unsetunset
  • 订阅者增长:用户保留率提升 10%

  • 收入增长:用户参与度增强,推动订阅续费率上升

unsetunset**非财务收益:**unsetunset
  • 提升用户体验的个性化程度

  • 优化内容分发与策略制定

电信行业:AT&T

AT&T 的 AI 模型通过分析与协调网络性能数据和客户交互,优化网络运营,并利用聊天机器人实现个性化客户服务。

unsetunset**技术架构:**unsetunset
  • 人工智能模型:应用于网络分析的机器学习模型

  • 框架:支持多模态数据输入的边缘计算框架

  • 工具:人工智能聊天机器人、数据分析平台

unsetunset**财务影响分析:**unsetunset
  • 成本节约:将运营支出减少 15%

  • 收入增长:通过个性化推荐提升附加销售收入

unsetunset**非财务收益:**unsetunset
  • 网络可靠性的提升

  • 客户满意度的改善

政府与公共部门:新加坡案例研究

新加坡利用人工智能模型对交通流量、能源消耗及公共安全进行协调与管理。该多模态系统通过处理来自多种传感器和公众反馈机制的数据,实现实时决策支持。

unsetunset技术堆栈unsetunset
  • AI模型: ML 和 生成式人工智能模型

  • 框架: 智慧国家平台

  • 工具: 物联网传感器与云计算

unsetunset财务影响unsetunset
  • 效率提升: 行政成本降低 25%

  • 经济增长: 吸引 120 亿美元的外国投资

unsetunset非财务收益unsetunset
  • 改善公共服务

  • 提升公民生活质量

真实世界的成功案例

业务功能中的创新

人力资源: Unilever

Unilever 使用人工智能分析视频面试和应答,以筛选候选人,从而使招聘人员能够聚焦于最具潜力的申请者。

unsetunset技术栈unsetunset
  • AI 模型: 自然语言处理 (NLP) 和面部识别算法

  • 技术框架: 多模态候选人评估平台

  • 工具: 使用 HireVue AI 平台

unsetunset财务效益unsetunset
  • 成本减少: 每年节省超过 100 万美元的招聘成本

  • 效率提升: 招聘时间缩短 75%

unsetunset非财务效益unsetunset
  • 进一步提高招聘过程中的多样性

  • 改善候选人体验

客户服务: Bank of America

Erica 是一款 AI 虚拟代理,每天处理超过一百万个客户查询——包括当月至今的支出快照和标记重复收费——提供即时帮助,并让人工客服代理专注于更复杂的问题处理。

unsetunset技术架构unsetunset
  • 人工智能模型:用于对话接口的生成式人工智能 (GenAI)

  • 技术框架:多模态交互的客户服务平台

  • 工具:虚拟助手 Erica(智能客户助理)

unsetunset财务影响unsetunset
  • 成本节约效果:将客户服务成本降低了 10%

  • 收入增长效果:产品的交叉销售额增长了 5%

unsetunset非财务收益unsetunset
  • 显著提升客户满意度

  • 提供 24/7 全天候客户支持

市场营销:可口可乐 (Coca-Cola)

可口可乐利用人工智能用于生成营销内容、分析消费者趋势以及实现广告个性化的应用,从而打造更加高效的市场营销活动。

unsetunset技术架构unsetunset
  • 人工智能模型: 生成式对抗网络(GANs)

  • 框架: 针对消费者洞察的多模态数据分析

  • 工具: 定制化人工智能平台

unsetunset财务效益分析unsetunset
  • 效率提升:内容创作时间减少 50%

  • 收入增长:营销活动投资回报率(ROI)提升 20%

unsetunset非财务性收益unsetunset
  • 创新性营销策略

  • 客户互动的增强

供应链管理: Walmart

Walmart 通过人工智能技术预测产品需求,优化库存水平,并加强物流管理,以确保产品能够在客户需要的时间和地点准时供应。

unsetunset技术栈unsetunset
  • AI 模型:用于需求预测的分析模型

  • 框架:整合销售、天气及事件数据的多模态集成框架

  • 工具:数据湖与机器学习模型

unsetunset财务影响unsetunset
  • **成本降低:**库存成本下降 15%

  • **收入增长:**产品可用性的改善推动了销售增长

unsetunset非财务收益unsetunset
  • 减少浪费

  • 强化供应商关系

研究与开发:Insilico Medicine

Insilico Medicine 是一家聚焦于长寿研究的生物技术公司,其开发了一款名为 inClinico 的 AI 平台,可用于预测 II 期临床试验结果,旨在加速药物发现与开发过程。

unsetunset技术栈unsetunset
  • AI 模型: 内部开发的多模态基础性模型

  • 平台: 多模态整合组学(如生物组学)、文本、临床试验、小分子性质和疾病靶点的平台

  • 工具: 基于 Transformer 架构、内部训练的 AI 模型与平台

unsetunset财务影响unsetunset
  • 成本减少: 在投资应用中实现九个月 ROI 达 35%

  • 时间效率: 显著缩短药物开发时间

unsetunset非财务收益unsetunset
  • 加速药物发现和临床试验过程

  • 临床试验的准确率达到 79%

法律领域: Hogan Lovells

该 AI 平台分析大量合同文件与其他法律文件,提取关键信息以及识别潜在风险。

unsetunset技术堆栈unsetunset
  • AI 模型:NLP 和 ML

  • 框架:Kira Systems 平台,支持多模态数据处理

  • 工具:Kira AI 平台

unsetunset财务影响unsetunset
  • 效率提升: 审查速度提升 40%

  • 成本节约: 为客户显著减少计费工时

unsetunset非财务收益unsetunset
  • 准确性的提升

  • 客户满意度的显著提升

采购:Coupa

Coupa 的人工智能驱动型支出管理平台能够优化供应商选择、合同管理与支出分析,将采购流程转型为一种战略性职能。

unsetunset**技术栈:**unsetunset
  • AI 模型:预测分析、机器学习和支出预算预测。

  • 框架:Coupa Source-to-Pay(从采购到支付框架),Coupa Business Spend Management(BSM)。

  • 工具:云计算、高级采购决策优化、实时支出透明度。

unsetunset**财务效益:**unsetunset
  • 投资回报率(ROI):实现了 276% 的显著增长。

  • 效率提升:采购周期大幅缩短,从而显著提升流程运行效率。

unsetunset**非财务效益:**unsetunset
  • 合规性显著提升,同时加强了风险管理能力。

  • 提升供应商绩效和合作关系。

信息技术运营:微软

微软利用人工智能监控 IT 系统,进行故障预测,并自动化支持工单处理,确保运营畅通无阻。

unsetunset**技术栈:**unsetunset
  • 人工智能模型:异常检测算法与预测性维护算法。

  • 框架:基于 Azure AI 的多模态数据输入(多模态数据输入指通过多种数据形式,如文本、图像、语音的集成实现)。

  • 工具:AI 聊天机器人及监控工具(用于监测系统性能和运行状况的工具)。

unsetunset**财务影响:**unsetunset
  • 成本节省:IT 支持成本实现 20% 的降低。

  • 运行效率提升:系统的正常运行时间提升了 15%。

unsetunset**非财务收益:**unsetunset
  • 员工工作效率得以提高,并对整体组织绩效产生了积极影响。

  • 前瞻性问题解决。

销售:Salesforce

Salesforce 的人工智能分析客户互动数据、市场趋势以及销售数据,以向销售团队提供可执行的洞见。

unsetunset**技术栈:**unsetunset
  • 人工智能模型:基于机器学习的预测分析。

  • 框架:Salesforce Einstein,支持多模态数据处理。

  • 工具:客户关系管理 (CRM) 系统。

unsetunset**财务影响:**unsetunset
  • 营收增长:增长 15%。

  • 效率提升:销售周期缩短 25%。

unsetunset**非财务收益:**unsetunset
  • 改善客户关系。

  • 强化决策能力。

关键生成式人工智能 (GenAI) 主动式工具及其差异化

商业解决方案

LangGraph
  • 目标用户:初创企业和已建立的企业

  • 支持:提供强大的客户支持和专业服务

  • 集成:可无缝集成到现有企业系统中

  • 定制化:具有高度的工作流程定制能力和控制权

  • 功能:包括高级功能,如状态保持能力(能够完全记忆或获取先前的通话或请求信息)、流媒体支持以及审核循环

CrewAI
  • 目标用户:《财富》全球 500 强企业和大型企业

  • 使用便捷性:提供无代码工具与模板,便于快速部署

  • 部署选项:支持自托管和云部署

  • 支持:提供全面的支持与维护服务

  • 效率:专为高效处理复杂的多智能体任务而设计

开源解决方案

AutoGen
  • 目标用户:开发者和研究人员

  • 开源框架:促进多个 AI 智能体之间的协作

  • 简化流程:协调、自动化并优化复杂的大语言模型 (LLM) 工作流

  • 人类介入模式:支持人类介入的工作流以提高性能

  • 社区驱动:推动社区内的创新与合作

AutoGPT
  • 目标用户:AI 爱好者与开发者

  • 自主 AI 智能体:基于大语言模型 GPT-4 架构独立执行任务

  • 任务管理:将复杂目标分解为可管理的子任务

  • 能力:通过互联网访问与代码执行完成任务

  • 多功能性:广泛应用于内容创作、客户服务等领域

  • 受欢迎程度:快速增长的开源项目,凭借技术创新与广泛应用吸引了强大的社区支持

在选择商业化或开源的 主动式人工智能 工具时,应考虑贵组织的需求、上下游集成能力,以及可获取资源以构建、部署和管理这些解决方案的可能性。

例如 LangGraph 和 CrewAI 等商业化解决方案,提供强大的支持、无缝集成及高级功能,非常适用于复杂且大规模的部署。

而开源解决方案(如 AutoGen 和 AutoGPT)则是快速原型开发及概念验证的理想选择,为技术决策者和开发人员提供了灵活性、社区驱动的创新,以及较低的进入门槛。

主动式AI工具生态系统预计在未来几个季度内将迎来快速增长。商业解决方案可能会继续提升其企业能力,重点致力于提供多样化的集成选项、AI安保以及开发者友好的功能。同时,开源工具将获得更多的社区贡献和支持,从而推动主动式AI功能在深度和覆盖范围上的快速创新,并进一步提升其采用率。

随着商业和开源人工智能解决方案的不断发展,组织应保持敏捷,充分利用两者的优势,以保持竞争力和创新能力。

制定您的 生成式AI 策略,并设计适合业务的人工智能能力路线图

没有执行的愿景仅是虚幻——将您的 生成式AI 策略 与可操作计划及精细化执行相结合。
让我们探讨如何将这些原则有效融入您的人工智能路线图中:

愿景与目标的对齐

  • 设定明确的目标: 贵组织的期望目标可能包括——降低成本、增加收入、提升客户满意度,或构建经济竞争壁垒。

  • 将人工智能计划与业务目标保持一致: 需要确保人工智能项目建立在企业长期战略规划的框架之上。无论目标是降低成本、增加收入还是创造竞争优势,人工智能的方向必须与业务目标高度契合,以确保相关性并最大化其影响力。

  • 确保高管支持: 获得高管支持对于资源争取与组织变革至关重要。高管支持还能够促进人工智能 (AI) 项目与组织整体业务战略的对齐。

  • 争取利益相关者的认同: 确保高层管理的目标与各部门的行动方向一致。

  • 从高价值的应用场景开始: 识别能够快速创造重大价值的关键领域。优先推进解决紧迫的关键问题或能够带来显著收益的项目,例如通过降低成本或增加收入,尽早展示人工智能 (AI) 的投资回报率 (ROI)。

  • 寻求专家建议: 咨询 AI 领域的专家或聘请相关顾问,以制定您的 AI 战略并帮助您做出明智决策。

能力评估

  • 技术基础设施: 贵组织的 IT 环境是否已具备适应 AI 集成的准备?

  • 平台选项: 综合考虑商业化和开源的 AI 解决方案,并根据贵组织的需求、预算和技术专长做出自主研发与外部采购之间的决策。

  • 考虑集成: 确保所选平台能够与您现有的系统和工作流程无缝集成,包括上游和下游。

  • 数据准备: 您是否具备获取高质量、多模态数据的能力?

  • 人才储备: 您是否具备内部技能储备,还是需要寻求外部专家的支持?

精细执行

  • 从小处开始: 先从小型试点项目入手,以验证 AI 在您业务环境中的有效性。

  • 成功评估: 确定明确的成功指标,并对试点项目的表现进行监控。从利益相关者收集反馈,并进行必要的调整。

  • 敏捷开发方法论: 在实施过程中,应保持灵活性、敏捷性和适应能力。

  • 反复迭代与优化:基于试点项目中的成果与洞察,不断优化方法并解决面临的任何挑战。

规模化

  • 逐步扩展:在试点项目验证成功后,逐步在运营的更多领域中推广实施 主动式人工智能 (Agentic AI)。

  • 确保支持:为团队成员提供适当的培训与支持,确保新技术能够顺利过渡并被有效采用。

  • 监控与优化:持续监测 主动式人工智能 系统的性能,并对其进行优化,以提升其性能和效果。

风险管理

  • 伦理考量:识别并解决潜在的偏见及合规性风险问题。

  • 安全协议:保护敏感数据,并确保人工智能管理与治理符合国家及国际标准。

组织变革

  • 教育和技能提升:应首先通过教育和培训,使员工熟悉数据与人工智能领域的核心概念,理解其定义、运作机制及其在组织、业务职能和/或行业中的潜在应用场景。

  • 促进创新:通过鼓励试验性探索与协作,在您的组织内部培养创新文化。

  • 适应与发展:确保能够根据技术的演进以及新兴机遇,积极调整战略与流程。

  • 保持信息更新:通过阅读行业报告、邀请专家参与全员会议、参加会议以及参与线上研讨会,紧跟人工智能的最新发展动态和趋势。

最大化人工智能投资回报率的 10 大注意事项和禁忌

避免落入生成式人工智能 (GenAI) 的炒作陷阱——聚焦能够切实创造实际价值的务实行动。

注意事项

  • 确保采取以客户为中心的策略: 始终优先关注终端用户的体验,长期看来能够在财务与非财务成果方面带来显著回报。

  • 进行深入研究: 在实施 AI 解决方案之前,对现有技术进行深入研究,以确定最符合业务需求的最佳解决方案。了解 主动式人工智能 的能力和局限性,以建立合理的期望并有效管理相关风险。

  • 以小规模项目作为起点: 通过试点项目验证 AI 解决方案的效果和应用价值。小规模实施可以在全面推广之前评估实施效果并优化技术方案。

  • 监控性能并迭代: 定期利用与业务目标相符的关键指标跟踪人工智能系统的性能。利用这些数据优化模型、调整策略,并随着时间的推移进行数据驱动的改进。

  • 建立跨职能团队: 组建由多个部门成员组成的团队,例如 IT、运营、财务及市场营销部门。跨职能的协作能够确保人工智能项目全方位地纳入不同视角和专业领域的知识。

  • 投资于员工培训: 帮助团队掌握必要的技能,以实现与 AI 系统的协同工作。培训能够确保顺利整合,并帮助员工充分发挥 AI 工具的作用。

  • 投资于高质量数据: 高质量数据是构建有效 AI 解决方案的基础。需要投入资源到数据清理、集成和管理流程中,以确保 AI 系统使用的数据具有准确性和可靠性,以支撑其运行。

  • 将数据安全和隐私置于优先位置: 实施稳健的安全措施以保护敏感数据。确保符合相关法规要求,以持续维护客户信任,规避潜在法律风险。

  • 投资于可扩展的 AI 平台: 选择可扩展的 AI 平台与工具,以满足业务增长需求。可扩展的解决方案可在无需重大额外投资的情况下拓展 AI 能力。

  • 投入持续学习: 保持好奇心,紧跟 人工智能 的最新进展和行业趋势。

注意事项

  • 切勿忽视客户反馈: 关注客户与 人工智能 解决方案的交互方式。根据客户反馈优化和提升用户体验。

  • 低估人工智能项目的复杂性: 人工智能 (AI) 项目并非即用即插。

  • 仓促实施: 机构在整合人工智能 (AI) 时,应避免在没有清晰且完整战略的情况下仓促实施。仓促的应用可能严重浪费资源,并导致低效或不理想的结果。

  • 忽视人类监督: 虽然人工智能 (AI) 可以自动化许多任务,但人类对于关键流程的监督和管理仍然至关重要。在自动化与人类干预之间实现平衡,以确保任务的高质量执行和明确的问责。

  • 忽视用户使用率: 确保生成式人工智能解决方案具有良好的用户体验,并满足日常使用者的需求。较高的用户使用率有助于实现更优质的数据输入、更精确的输出以及更高的投资回报率(ROI)。

  • 忽视伦理因素: 应密切关注人工智能应用的伦理影响。确保所设计的 AI 系统能够防止偏见,遵守隐私法律,推动公平性和透明性。始终遵循与人工智能应用相关的伦理准则和法律法规。

  • 忽略变更管理: 通过培训和变更管理计划,帮助员工为人工智能采纳做好准备。受过良好培训的员工更有可能接受 AI 工具,从而实现更高的使用效率与投资回报(ROI)。

  • 低估 AI 导入的成本: 务实评估 AI 集成所需的投资,包括基础设施、维护以及培训成本。合理规划预算,以规避可能面临的财务压力。

  • 重视合作伙伴关系: 应与可信赖的技术提供商、顾问、AI 专家及学术机构建立合作。借助外部专业知识,可以加速实施,提供宝贵的见解,并有效避免常见的陷阱。

  • 关注长期可持续性: 应制定长期的 AI 战略,包括对未来需求和技术进步的考量。可持续规划可以确保 AI 投资在未来持续创造价值。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值