-
论文链接:Towards Learning a Generalist Model for Embodied Navigation(https://openaccess.thecvf.com/content/CVPR2024/papers/Zheng_Towards_Learning_a_Generalist_Model_for_Embodied_Navigation_CVPR_2024_paper.pdf)
-
代码链接:https://github.com/LaVi-Lab/NaviLLM
主要贡献
-
论文提出了首个用于具身导航的通用模型NaviLLM,能够执行多种具身导航任务。
-
通过引入基于Schema的指令,将各种任务统一为生成问题,从而整合了来自不同数据集的数据源。
-
在CVDN基准上,NaviLLM相较于之前的最先进方法取得了29%的进步。
-
模型在具身问答和3D字幕生成等未见任务上同样表现出色。
研究背景
研究问题
具身导航要求智能体根据指令在三维环境中进行导航,并提供基于用户查询的文本响应。
本文主要解决的问题是如何构建一个能够与物理世界互动的通用智能体。
研究难点
该问题的研究难点包括:
-
以往的研究主要集中在特定任务的智能体上,缺乏对未见场景的泛化能力;
-
如何将各种任务统一到单个模型中也是一个挑战。
相关工作
该问题的研究相关工作有:
-
利用预训练技术、数据增强和记忆结构等方法的各种模型,但这些模型在特定任务上表现出色,但在跨任务泛化方面存在不足。
-
最近的研究表明,大语言模型(LLMs)在多个领域展示了显著的能力,但将其应用于具身导航任务仍然是一个未充分探索的领域。
研究方法
论文提出了NaviLLM,第一个用于具身导航的通用模型。
场景编码
使用视觉变换器(ViT)从图像中提取视觉特征,并通过多视图融合过程将这些特征整合为场景表示。公式如下:
其中, 是第个视角的视觉特征, 是第个视角的场景表示。
基于Schema的指令
为了将所有任务学习转化为生成问题,论文引入了基于Schema的指令。Schema包括任务、观察和历史三个部分。例如,
-
任务的Schema可以是导航指令,
-
观察的Schema可以是场景表示,
-
历史的Schema可以是过去的视觉观测。
多任务学习
将具身导航的关键任务(如视觉语言导航、对象定位、轨迹总结、3D问答和具身问答)转化为生成问题,并使用统一的交叉熵目标进行优化。每个任务的Schema具体如下:
-
视觉语言导航:任务Schema为导航指令,观察Schema为所有可达视角的场景表示,输出提示为选择移动方向。
-
对象定位:任务Schema为对象定位命令,观察Schema为当前位置的所有可见对象的表示,输出提示为选择对象。
-
轨迹总结:任务Schema为总结风格,观察Schema为历史表示和场景表示,输出提示为总结轨迹。
-
3D问答:任务Schema为室内场景的问题,观察Schema为不同位置的场景表示,输出提示为基于场景回答问题。
-
具身问答:先执行导航任务,再回答问题。
实验设计
数据收集
训练数据来自多个具身导航任务的数据集,包括CVDN、SOON、R2R、REVERIE、ScanQA和LLaVA-23k。还使用了R2R和REVERIE数据的增强数据。
实现细节
模型采用了两阶段训练策略,预训练阶段使用教师强制训练,多任务微调阶段交替使用教师强制和学生强制。
优化器为Adam,学习率为3e-5,预训练阶段训练10000步,多任务微调阶段训练5000步,批量大小为64。
评估指标
-
对于视觉语言导航任务,使用成功率(SR)、路径长度加权成功率(SPL)、Oracle成功率(OSR)、轨迹长度(TL)和目标进度(GP)作为评估指标;
-
对于3D问答任务,使用精确匹配(EM)、METEOR、ROUGE-L、CIDER和BLEU-4作为评估指标;
-
对于具身问答任务,使用成功率(SR)和路径长度加权成功率(SPL)作为评估指标。
结果与分析
与现有方法的比较
NaviLLM在CVDN、SOON和ScanQA数据集上取得了最新的结果,并在R2R和REVERIE数据集上表现与最新方法相当。特别是在CVDN数据集上,NaviLLM的目标进度(GP)显著提高了29%。
未见任务的泛化能力
在排除CVDN、SOON和REVERIE数据集的训练数据后,NaviLLM在所有任务上均优于基线方法,特别是在SOON数据集上的成功率(SR)提高了136%。此外,NaviLLM在未见任务(如具身问答和3D字幕生成)上也展示了令人印象深刻的能力。
消融实验
多任务学习增强了所有任务的性能,随机初始化的LLM显著降低了性能,而预训练在增强数据上的收益有限。
可视化
-
轨迹总结:在图(a)中,展示了模型如何根据给定的轨迹生成准确的逐步指令。这些指令可以用于数据增强。
-
对象导航:图(b)展示了模型在未见过的场景中进行对象导航的能力。
-
EQA:图©展示了模型在EQA任务中的表现,即模型能够先执行导航过程,然后到达目标位置后回答问题。
-
3D字幕生成:图(d)展示了模型在3D字幕生成任务中的能力,特别是模型能够根据指令生成不同粒度的字幕。
总结
论文提出了NaviLLM,第一个用于具身导航的通用模型。
通过引入基于Schema的指令和多任务学习,NaviLLM成功地将各种任务统一到一个模型中,并在多个基准数据集上取得了最新的结果。
此外,NaviLLM在未见任务上也展示了强大的泛化能力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。