“LLM-Based Routing in Mixture of Experts: A Novel Framework for Trading”
传统交易方法依赖统计分析和预测模型,但难以适应金融市场的复杂性和波动性。深度学习方法在量化交易中表现出色,但通常依赖单一预测器,导致性能不稳定。
本文提出LLMoE框架,结合MoE与语言模型作为路由器,动态选择专家模型,整合历史股价和新闻头条。LLMoE通过“全进全出”策略生成交易策略,提升专家选择和金融市场应用的性能。
实验结果显示LLMoE在风险调整回报指标(如Sharpe Ratio和总回报)上提升超过25%。
论文地址:https://arxiv.org/pdf/2501.09636
摘要
深度学习和大语言模型(LLMs)的进展推动了混合专家(MoE)机制在股票投资中的应用。现有模型多为单模态,忽视了文本数据等其他模态的信息。传统的神经网络路由选择机制未考虑上下文和现实细节,导致专家选择不佳。
本文提出LLMoE框架,用LLMs替代传统路由器,基于历史价格数据和股票新闻选择专家。LLMoE在多模态真实股票数据集上的实验结果优于现有MoE模型和其他深度神经网络方法。LLMoE的灵活架构便于适应各种下游任务。
简介
传统交易方法依赖统计分析和预测模型,但难以适应金融市场的复杂性和波动性。深度学习方法在量化交易中表现出色,但通常依赖单一预测器,导致性能不稳定。Mixture-of-Experts (MoE) 方法通过多个专家模型提高性能和泛化能力,模拟真实交易环境。传统MoE模型存在局限,静态路由器缺乏灵活性,且多依赖数值数据,忽视文本信息。
本文提出LLMoE框架,结合MoE与语言模型作为路由器,动态选择专家模型,整合历史股价和新闻头条。LLMoE通过“全进全出”策略生成交易策略,提升专家选择和金融市场应用的性能。
方法
问题定义
使用五天的连续描述性数据(包括数值特征和新闻标题)来预测下一天的股票走势 Y t+1。目标是基于 Y t+1 开发交易策略,结合定量数据和定性背景以增强决策能力。
LLMoE:基于LLM路由的MoE方法
LLMoE框架利用LLM作为MoE架构中的路由器,实现多模态数据的高效专家选择。
LLM-based Router。处理历史股价和新闻信息,分类专家为正面和负面,基于上下文选择最合适的专家,提高决策质量。
Expert Prediction。乐观和悲观市场条件下的专家模型进行预测,使用前馈神经网络分析价格指标,提升预测准确性和决策能力。
Trading Algorithm Generation。采用“全进全出”策略,根据专家预测动态调整投资,最大化收益。
实验
实验设置
数据集。使用2006-2016年间的MSFT和AAPL市场数据,前者缺失新闻较多,后者数据较完整,评估LLMoE在不同条件下的多模态数据整合能力。
特征。构建价格比率、日价格变化和移动平均滚动偏差等特征,捕捉短期和长期市场趋势。
基线模型。与梯度提升、神经网络和传统Mixture of Experts模型对比,评估LLMoE的有效性。
评估指标。使用总回报、年化波动率、夏普比率等七个金融指标,衡量模型在不同市场条件下的收益与风险平衡能力。
实验细节。基线模型超参数通过随机搜索优化,LLMoE使用网格搜索,所有模型采用一致的5天回溯窗口,实验重复十次以确保结果稳健。
具体实现
路由器
使用Llama3.2作为路由器,结合数值和文本数据,基于五天滚动窗口特征进行市场情绪分类。输入特征为五个连续数据点,结合数值特征和对应的新闻标题,形成描述字符串。
路由器输出包括:
- 分类:将市场情绪标记为乐观或悲观,选择最高可能性的标签。
- 解释:生成自然语言解释,提供分类依据,增强透明度。
专家模型
专家模型针对乐观和悲观市场条件,采用统一架构,处理55个数值特征,预测次日股价走势。输入层使用滚动窗口结构,包含5天的11个数值属性(如日价格指标和滚动偏差)。该输入表示法能够捕捉短期波动和长期趋势,提高预测准确性。
结果
路由器的类人推理
LLMoE框架中的路由器通过整合数据信息和文本信息展现人类般的推理能力。例子中,尽管新闻对苹果增长表示担忧,路由器识别出价格和销量的持续增长,暗示出“谨慎乐观的前景”。这种推理能力表明路由器能够权衡乐观的数值趋势与混合的文本情绪,从而生成平衡且具上下文意识的预测。
LLMoE性能优异
LLMoE模型在总回报、夏普比率和卡尔玛比率等关键指标上显著优于其他基线模型,显示出在收益与风险平衡方面的卓越表现。结果表明,使用LLM作为路由器整合数值和文本数据的效率和准确性。
2-Expert MoE与LLMoE的比较
LLMoE通过动态整合多模态数据,优于静态路由的2-expert MoE模型。LLMoE实现了更有效的专家资源分配,提升了风险调整回报指标(如Sharpe Ratio和Calmar Ratio)。风险管理改善,最大回撤(MDD)降低。
总结
本文提出LLMoE框架,将预训练的大型语言模型作为Mixture of Experts (MoE)架构中的路由器。动态结合数值股票特征与文本新闻数据,提升定量与定性分析的结合。该动态路由机制克服传统MoE系统的静态限制,增强对市场波动的适应性。实验结果显示LLMoE在风险调整回报指标(如Sharpe Ratio和总回报)上提升超过25%,成为智能交易策略的先进工具。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。