摘要
PatientSeek 是首款开源的MED-LEGAL医学推理 AI 模型,专注于疾病诊断和法律医学关联分析,结合医疗和法律领域的深度推理能力,高效、安全、经济地支持复杂的专业需求,支持本地运行并优先保护数据隐私,性能优于其他开源模型且成本更低。
WhyHow.AI
关键要点
-
开源首创:PatientSeek 是首款专为 MED-LEGAL 工作流设计的 AI 模型,可处理医疗和法律数据的复杂推理问题
-
**核心价值:**提升疾病诊断和法律医学工作流的关联分析能力,支持敏感数据的本地、私密和安全处理
-
技术优势:基于DeepSeek R1微调开发,使用CometML等先进工具,支持离线操作以保障数据安全和隐私 .
基于DeepSeek R1微调开发,使用CometML等先进工具,支持离线作以保障数据安全和隐私 . -
行业需求导向:专注于医疗条件与外部事件因果关系的推导,满足法律审查要求并提升人类专家效率 .
-
高性价比:运算成本显著降低,处理复杂查询的费用不到 $0.05,比 GPT-4o1便宜 27 倍 .
-
性能卓越:基础临床任务如病情检测的准确性达 90%,在复杂任务(病患总结、治疗计划生成)中超越主流开源模型 .
-
协作而非替代:通过自动化分析重复任务,增强人类医疗和法律专业人士的工作,而非取而代之 .
-
专注领域适配:针对复杂推理任务进行了专门优化,能有效解决通用 AI 模型难以应对的专业问题 .
-
**未来计划:**WhyHow.AI计划继续开发更多支持MED-LEGAL工作流的模型 .
相关链接:
https://huggingface.co/whyhow-ai/PatientSeek
要运行此模型,可以从 https://huggingface.co/whyhow-ai/PatientSeek 下载它,并按照以下说明使用:https://unsloth.ai/blog/deepseek-r1
https://huggingface.co/unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF
我们很高兴推出 PatientSeek,这是一个开源的 MED-LEGAL 推理模型,在最大的可访问医疗记录数据集之一上进行训练,可以在本地安全地运行。
我们在最大的可访问患者记录数据集之一上微调了 DeepSeek R1 模型,用于医学总结和问答。我们以符合 MED-LEGAL 空间需求的特定方式专门预处理了数以万计的患者记录,并利用 DeepSeek 模型套件的推理功能来复制如何发现患者记录与外部事件之间的相关性。我们利用 CometML 进行数据集存储和实验跟踪,利用 Unsloth 和 HuggingFace TRL 进行微调,并利用 AWS Sagemaker(由 NVIDIA Inception startu p 计划慷慨提供给我们的积分资助)来生成此模型。
此模型的商业价值
在“MED-LEGAL”领域(定义为涉及法律和医疗保健考虑因素的行业和工作流程)中,我们希望优化的两个关键方面是提高以下方面的最新技术:
-
疾病和诊断识别
-
相关性和因果关系的假设检验
我们构建这个模型的价值和原因是因为我们意识到 “MED-LEGAL” 工作流程通常必须进行许多关联和关联,特别是围绕需要符合法律标准的医疗保健因果关系问题,这些问题在传统医疗工作流程或传统法律工作流程中不存在。鉴于我们团队在法律和医疗保健方面的独特背景,我们一直在与医疗专业人员一起帮助收集和预处理这些数据,而像 DeepSeek 这样强大的开源推理模型的出现恰逢其时。
现在,可以与必要的人类专业知识合作完成一套以智能方式编排以支持这些从业者重复任务的模型和代理。例如,快速的患者病史或有关糖尿病药物使用的问题可以为实时患者对话提供必要的上下文,并且模型中的相关推理可以突出显示并非立即显而易见的事物。
为什么是现在:随着 DeepSeek r1 的发布,以及自动推理的广泛商业接受和采用,我们可以开始使用数据来监督我们想要的方向进行推理。此外,模型的通用功能不需要扩展,而是需要更加“磨练”,以最能支持从业者的方式做出响应和推理。通过这种方式,我们可以确信,随着我们扩展特定模型和Agent套件,它们将最适合所需的任务。
通过这个模型,我们优化了一个足够小的模型,该模型可以离线、本地、私密和安全运行,这对于处理敏感患者数据的组织至关重要。我们将 O1 作为准确性的同类基准,并表明尽管 DeepSeek 的成本降低了 30 倍,并且能够在私有的本地环境中运行,但我们的性能与 O1 一样好或更好。
数据基础设施是性能的关键解锁
微调不是将随机数据转储到模型中,然后收工。DeepSeek 的存在和进步是基于刻意构建数据以提高性能的理念,这是我们创建模型来解决业务问题的态度的一部分。
很少以用于微调的格式收集数据,并且需要进行预处理以适应反映业务目标的格式。此外,不同的模型架构和模型类型(instruct、SFT 等)需要不同的格式(一个很好的参考是 Unsloths 数据集 101,此处:https://docs.unsloth.ai/basics/datasets-101)。由于这是对推理模型的微调,因此我们需要每个模型都有很多示例,具有一致的格式和各种答案。这种预处理的价值不容低估,尤其是因为正确处理数据可以使组织与最新的模型架构保持同步。
我们打算构建一套模型,旨在利用最新的推理发展,并使其适应特定的任务和用例。这些模型将有助于完成标准任务,如相关性分析、医学知识图谱创建、实体提取、推理、采取行动、对话和许多其他任务,为代理架构提供动力。我们的训练集不包含 PII,并且是以合规和商业的方式创建的。
模型评估
我们以可以在本地安全地运行的流行通用模型和 O1 进行基准测试,这些模型不能在本地或私人运行,但代表了那些只关心准确性(而不是成本或隐私)的人的最新技术。
我们的评估证明了 PatientSeek 在不同医疗任务中的专业能力,在复杂的医疗推理方面显示出特别的优势。虽然所有模型在提取患者人口统计数据等基本任务上都表现良好(准确率从 89.7% 到 97.8% 不等),但随着任务复杂性的增加,PatientSeek 表现出越来越大的优势。
在基本临床任务(如病情检测和生命体征分析)中,PatientSeek 达到了 ~90% 的准确率,优于其他开源模型,同时保持了 O1 水平的性能。这一优势在复杂的医疗任务(如生成患者摘要和治疗计划)中变得更加明显,其中 PatientSeek 保持 ~90% 的准确率,而其他模型则表现出明显的性能下降。在复杂任务中,相对于 O1 和高性能开源模型的优势凸显了 PatientSeek 的专业医疗能力,这是通过对医疗文档和临床工作流程的集中培训以及专门微调的医疗 QA 实现的。
复杂推理任务
基本任务
这些结果表明,虽然通用语言模型可以充分处理基本的医疗任务,但像 PatientSeek 这样的专业模型为更复杂的推理过程和医疗应用程序提供了巨大的好处。这对于寻求复杂医疗文档和分析任务的可靠自动化的提供商尤其重要。
即使对于更基本的任务,PatientSeek 也明显优于其他本地运行的模型,并且与 O1 相比具有竞争力,尤其是当我们考虑到成本和本地运行的能力时。相比之下,DeepSeek R1 作为 API 比 O1 少大约 27 倍。
在我们的案例中,对于 PatientSeek 来说,它要便宜得多。我们在 AWS 上托管了 DeepSeek 模型,每个基本问题(30k 输入,2k 输出)的成本为 <0.01 美元,每个更复杂的问题仍然成本为 <0.05 美元,即使使用 r1 的详细推理输出也是如此。我们还通过 Ollama 在 M2 Mac 上运行系统,它在功能上是免费的。
PatientSeek 是第一个开源的、本地运行的 R1 推理模型,该模型在患者记录上进行了微调,该模型是公开可用的,并且在法律医学领域具有人类水平的理解能力。随着我们继续开发支持 MED-LEGAL 工作流程的模型和构建产品,为了快速了解患者的病史或在患者特定的因果之间建立相关关联,我们将更新和调整最新模型,以适应这些从业者遇到的最相关问题。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。