在乡村振兴战略和数字经济双重驱动下,农业正经历一场深刻的产业变革。传统农业模式中,土地、农产品和农机等实体资产虽具价值,但往往“沉睡”在各自的农户和区域中;同时,“认养”模式虽然能激活部分农村资源,但价值传递和收益分配仍存在诸多局限。如今,RWA(现实世界资产代币化)商业模型以数据为核心生产要素,通过将农业资产数字化、通证化,并与认养模式深度融合,正引领一场从“认养”到“资产化”的价值跃迁革命。
一、农业RWA与认养模式的融合逻辑
在乡村振兴的大背景下,农业RWA商业模型与认养模式的有机结合成为激活农村资源的重要路径。
- 数字化资产确权:利用区块链、物联网等技术,将农田、作物、农机具等实体资产数字化,并转化为可流通的金融工具,实现“认养”权益的数字确权。
- 产销前置与参与式消费:认养模式通过预售、参与式消费等方式,提前锁定农产品销售和收益;而RWA则将这些认养权益转化为可交易的链上资产,形成“生产–确权–流通–增值”的闭环生态。
- 核心价值跃迁:这一融合模式不仅释放土地承包权、农产品收益权等“沉睡资产”的潜在价值,同时通过代币化参与降低市场波动风险,实现城乡资本的双向流动,推动农户、投资者与消费者之间的利益共赢。
二、农业RWA商业模型的核心架构
农业RWA商业模型主要由以下三个层面构成,构建了一个完整的价值生态系统:
1.资产层:认养权益的数字化确权
- 土地与作物代币化:将认养地块、果树、禽畜等实体资产拆分为NFT或证券型通证(ST),例如“一亩稻田=1000份土地代币”,支持碎片化投资与自由转让。
- 生产过程上链:通过物联网设备实时采集作物生长数据(如土壤湿度、施肥记录、病虫害信息),生成不可篡改的“数字孪生资产包”,让认养者随时查看资产状态和生产动态。
- 动态权益设计:将基础权益(如农产品实物交付)与增值权益(如碳积分、乡村旅游体验)分层绑定,提升通证的附加值,激励各方长期参与和增值。
2.金融层:流动性机制与衍生创新
- DeFi+认养金融:构建去中心化借贷平台,农户可以将RWA代币作为抵押品获得流动资金支持;消费者和投资者通过质押认养通证获得分红收益,实现资金与资产的高效流转。
- 收益权证券化:将认养农产品的未来收益打包为STO(证券型通证),例如“茶园年度茶叶收益权”,面向全球投资者发行,实现资产的跨境流通和融资功能。
- 保险与衍生品:基于气候和生产数据,开发“干旱指数期货”或“产量保险代币”,为农业生产提供风险对冲机制,降低自然灾害和市场波动风险。
3.运营层:全域生态协同
- C2F(Consumer to Farm)直连模式:消费者通过持有RWA代币参与种植决策,如选择有机肥料或制定种植方案,实现“云种植”和个性化定制,缩短产销距离。
- 农旅融合增值:将认养权益与乡村旅游、农耕体验相结合,代币持有者不仅能获得农产品,还可享受免费住宿、采摘体验等服务,推动农业与旅游、文化的深度融合。
- 碳汇经济整合:将农业生产过程中产生的碳汇量转化为碳资产,通过国际碳交易市场实现交易,为农户和投资者创造额外收益。
三、关键成功要素与风险控制
农业RWA商业模型的成功实施需要在政策、技术、市场和教育等多个层面形成合力,关键成功要素包括:
1.四维驱动模型
- 政策合规性:确保符合国家《农村土地经营权流转管理办法》等相关规定,探索地方政府主导的“监管沙盒”试点,确保代币发行和交易合法合规。
- 技术可信度:整合区块链、AIoT(人工智能物联网)、隐私计算等前沿技术,构建坚实的技术底座,确保资产确权和数据安全。
- 利益分配机制:设计“农户-平台-投资者”动态分成模型(如农户60%、平台20%、投资者20%),确保各方利益公平分配,防止资本过度侵蚀。
- 市场教育与推广:通过“示范农场+数字钱包”等模式,降低农户操作门槛,培养“新农人”和“代币投资者”,提升市场接受度。
2.风险缓释策略
- 资产价值锚定:引入第三方机构定期评估土地、作物的生产能力及代币价值,防止资产泡沫。
- 多重保险机制:设立风险准备金池,每笔交易抽取一定比例作为灾害补偿基金,并与保险公司合作开发定制化农业险产品。
- 跨区域协作:建立区域认养联盟,在一地歉收时由其他地区代偿,保障整体系统的稳定履约能力。
四、实践案例:从地方探索到全域复制
1.浙江“数字稻田”项目
- 将500亩稻田拆分为以“1亩”为单位的NFT,认养者不仅获得实物大米,还可享受碳积分等增值收益;通过智能合约自动分配收益,吸引了超2000万元城市资本参与,实现年化回报率8%以上。
2.十堰市“互联网+认养农业”平台
- 整合黑木耳、贡米等特色农产品,消费者通过代币认购参与生产决策,并通过平台实现“种植直播+远程浇水”等功能,使农户资金周转效率提升3倍,用户留存率达70%。
3.清远飞来峡镇“认养农业+碳汇”模式
- 将鸡、麻竹笋等资产代币化,代币持有者可兑换农产品或碳配额,年碳汇交易额突破500万元,为农民增收和环保贡献双赢成果。
五、未来展望:农业RWA商业模型的范式革命
农业RWA商业模型并非简单的技术叠加,而是一场对农业生产关系和城乡资源分配方式的深刻变革。未来,随着技术的不断突破和政策环境的优化,农业RWA将推动以下三大转变:
-
从“小农经济”到“链上合作社”
分散的农户通过去中心化自治组织(DAO)整合为联合体,共享先进技术、品牌资源与市场渠道,实现规模化经营和协同发展。 -
从“在地化生产”到“全球化配置”
海外投资者可通过RWA代币持有中国茶园、果园等农业资产,实现农业资本的跨国流动和全球配置,推动中国农业与国际市场深度融合。 -
从“单一产销”到“生态经济”
RWA模型整合生产、消费、旅游、碳汇等多维场景,构建自我强化的生态价值网络,提升农业全产业链的综合竞争力,实现农业与服务业、环保等多产业联动共赢。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。