一共是7种设计模式,先看一下总图:
-
协调者/分发模式 (Coordinator/Dispatcher Pattern)
-
- 例子: 智能客服中心。当用户提出一个复杂问题时,“协调者”智能体首先理解问题的类型(例如,账单问题、技术故障、产品咨询)。然后,它将该问题“分发”给专门处理该领域的“专家”智能体(如账单专家、技术支持专家、产品知识专家)。协调者不直接解决问题,而是确保问题被路由到最合适的处理者那里,并可能跟踪问题的解决状态。
-
顺序管道模式 (Sequential Pipeline Pattern)
-
- 步骤1 (输入验证): 第一个智能体接收原始数据(如销售记录),并验证其格式是否正确、数据是否完整。
- 步骤2 (数据处理与分析): 第二个智能体接收验证后的数据,进行统计分析、计算关键指标(如月度增长率、销售额)。
- 步骤3 (结果报告): 第三个智能体接收分析结果,将其格式化为人类可读的报告(如图表、摘要),并可能将其发送给相关人员。每一步的输出是下一步的输入,按顺序执行。
-
- 例子: 自动化报告生成系统。
-
并行扇出/聚合模式 (Parallel Fan-Out/Gather Pattern)
-
- 例子: 旅游行程规划。用户输入目的地和日期,“扇出”阶段启动多个并行运行的智能体:一个搜索机票,一个搜索酒店,一个搜索当地活动和景点。这些智能体同时独立工作以提高效率。当所有智能体完成搜索后,进入“聚合”阶段,另一个智能体将收集到的机票、酒店和活动信息整合成一个完整的行程计划推荐给用户。
-
层级任务分解模式 (Hierarchical Task Decomposition)
-
- 顶层 (报告撰写者): 负责最终论文的整体结构和风格。
- 中层 (研究助手): 接受顶层指令,将任务分解为更小的部分,例如“文献综述”、“数据分析”、“方法论描述”。它委派这些子任务给底层专家。
- 底层 (专家): 多个智能体分别执行具体任务,如“网络搜索”智能体负责查找相关文献,“数据分析”智能体处理实验数据,“文本摘要”智能体总结文献要点。底层完成后将结果汇报给中层,中层整合后再提交给顶层完成最终论文。
-
- 例子: 撰写一篇研究论文。
-
审查/批评模式 (Review/Critique Pattern)
-
- 例子: AI辅助内容创作。一个“创意写作”智能体负责生成文章初稿。稿件完成后,交给一个“事实核查与风格审查”智能体。该审查智能体检查文章中的事实准确性、语法错误、逻辑连贯性以及是否符合预设的风格要求(如正式、幽默)。审查结果(可能包含修改建议或错误标记)反馈给写作智能体或直接呈现给用户。
-
迭代优化模式 (Iterative Refinement Pattern)
-
- 例子: 软件代码优化。一个“代码生成”智能体根据需求初步生成一段代码。然后,一个“性能测试与静态分析”智能体运行测试用例,检查代码的性能瓶颈、潜在bug和代码规范符合度。测试结果反馈给“代码优化”智能体,该智能体根据反馈修改代码。这个“生成-检查-优化”的循环不断进行,直到代码达到预定的质量标准(如性能指标、测试通过率)才退出循环,输出最终优化后的代码。
-
人机协作模式 (Human-in-the-Loop Pattern)
-
- 例子: 医疗影像辅助诊断。AI智能体分析医学影像(如X光片、CT扫描),识别出可能的异常区域,并给出初步诊断建议和置信度。由于医疗诊断的严肃性,系统会将AI的分析结果和标记的区域提交给人类医生(操作员)。医生审查AI的建议,结合自己的专业知识做出最终诊断决策。或者,在模棱两可的情况下,AI请求人类专家提供额外信息或判断,然后基于人类的输入继续处理。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。