从困局到破局的AI+数据分析

数据是新时代的石油,人工智能是炼油厂。

当两者强强联合,一场数据分析的革命正悄然发生。 多少次你面对Excel发愁?多少次为了一份报告熬夜加班?多少次因为不懂SQL被卡在数据获取的门槛前?

现在,这些痛点都将成为过去。AI+数据分析正在重塑我们的工作方式,让每个人都能成为数据分析师。

img

困局:数据分析的四道高墙

你所在的公司刚刚启动了一个数据驱动决策的项目。老板指派你负责,兴奋之余,你很快发现自己陷入了困境

img

第一道墙:数据分析思维素养。

老板希望看到精准的数据报告和有价值的业务建议,而不是感性的"我觉得"。如果企业决策者不重视数据驱动,你精心准备的分析报告只会石沉大海。

第二道墙:数据质量挑战。

你打开Excel表格发现:缺失值一大堆,格式不统一,单元格合并混乱,数据完整性差。你辛辛苦苦做了个报表,却被质疑"这数据准吗?"

第三道墙:专业知识壁垒。

你需要了解统计学原理、指标体系构建、可视化规范。当你连"同环比"的计算公式都搞不清楚时,做出复杂的用户RFM模型简直是天方夜谭。

第四道墙:工具使用能力。

精通Excel已经不够用,SQL、Python、PowerBI、Tableau…学习曲线陡峭,入门容易精通难。

四道高墙拦住了大多数想做数据分析的人。我在数据行业四年,发现"人人都是数据分析师"是一个美好但难以实现的理想。普通业务人员本职工作已经很忙,没有大量时间学习这些专业技能。

直到AI出现,这一切开始改变。

破局:AI赋能全流程数据分析

当AI进入数据分析领域,整个游戏规则发生了变化。传统数据分析需要六个步骤:定义问题、思路拆解、数据获取、数据处理、数据分析、数据可视化

而AI时代,这个流程被极限压缩成三步:

img

第一步:上传数据。把Excel表格、CSV文件或截图直接丢给AI。

第二步:提出问题。用自然语言告诉AI你想了解什么,甚至可以是模糊的问题。

第三步:获取分析结果。AI会自动完成数据清洗、处理、分析,并生成可视化图表和业务建议。

让我用一个真实案例说明这种变革:

某教育机构在微信群收集了一份家长接龙反馈。

传统方式下,运营需要手动整理这些文本数据,逐条复制粘贴到Excel中,划分字段,再统计分析,最后制作图表。整个过程至少需要20-30分钟。

而用AI方式,只需截图发给ChatGPT,一句话"帮我分析这份接龙数据",30秒内就能得到结构化数据表格和分析结果。从30分钟到30秒,效率提升了60倍。

AI数据分析的神奇之处不仅在于速度,更在于全流程赋能:

1.数据获取阶段:不会SQL?AI可以为你编写查询语句。没有结构化数据?AI可以从文本、图片中提取数据。缺乏指标体系?AI可以帮你梳理业务指标。

2.数据处理阶段:数据清洗往往占据分析总时间的70%。AI可以自动识别并修复错误格式、缺失值、异常值,将非结构化数据转换为结构化数据。

3.数据分析阶段:不懂RFM模型?不了解相关性分析?AI可以自动选择合适的分析方法,执行复杂的统计和建模,甚至提供业务洞察。

4.数据可视化阶段:不知道选择什么图表类型?无需考虑布局和配色,AI可以直接生成符合专业规范的图表,还能一键生成PPT汇报。

例如,近期看到一篇AI Agent自动将Excel转为图表的案例:AI智能体|老板以为我在加班做Excel图表,其实是DeepSeek+扣子(Coze)在帮我!

远见:AI数据分析的革命性意义

AI对数据分析最大的改变不是速度,而是门槛的降低

img

过去的数据分析是金字塔结构:底层大量员工做数据处理工作,上面是数据分析师、数据科学家,塔尖是少数能用数据做决策的管理者。

而AI时代,这个金字塔被彻底压扁,变成了"数据民主化"的扁平结构。

AI数据分析的革命性意义在于:

解放数据处理时间

传统数据分析师70%的时间用于数据清洗和处理,只有30%的时间用于真正的分析和洞察。AI自动化了繁琐的数据处理工作,让分析师可以将更多精力放在业务思考上。

从"数据"到"分析"

很多企业的数据报告只是表格的堆砌,没有真正的分析和洞察。AI帮助我们突破了技术壁垒,让我们能够直接关注"为什么数据会这样"和"我们应该如何应对"这些本质问题。

人人都是数据分析师

AI让没有专业背景的业务人员也能完成复杂的数据分析。营销经理可以分析用户行为,产品经理可以评估功能表现,客服主管可以了解满意度趋势。

当然,AI数据分析也存在一些挑战:

1. 数据安全问题:上传敏感数据到第三方AI平台存在泄露风险

2. 处理能力有限:当前AI对大数据量(20万行以上)处理能力有限

3. 计算准确性:AI不擅长高精度计算,可能存在细微误差

4. 图表定制性:AI生成的图表格式调整灵活性不足

这些问题正在逐步解决。国产AI数据分析工具正在崛起,它们提供本地私有化部署,确保数据安全;支持千万级数据量计算;保证计算精准度;并允许个性化调整图表格式。

未来,随着大模型和专业AI工具的发展,"数据民主化"将成为现实。每个人都能像使用搜索引擎一样使用数据分析工具,企业的数据资产价值将得到最大化释放。

最后,我想说,AI不会替代数据分析师,而是让每个人都能成为数据分析师。真正的价值不在于掌握技术工具,而在于业务洞察和决策能力。在AI时代,谁能提出好问题,谁就能获得好答案。数据分析的门槛降低了,但数据思维的重要性提高了。

早用AI,多提效,少加班!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值