最近新功能新工具非常集中的发布,各个工具都有各自的特点,非常希望能够及时分享给大家。Cherry Studio客户端是更新最快的,不停在迭代,一直在提升使用体验。之前的版本支持了内置MCP服务,不过内置MCP数量不多,有不少服务还要从MCP市场上添加的,有时还是会碰到添加不成功的情况。此次版本升级,引入了一种新的添加机制,即从ModelScope MCP广场同步MCP服务器。只要在ModelScope开通了对应的MCP服务,那么就可以通过同步选项一键式添加到本地配置。今天我们就来介绍一下这种同步添加MCP服务器的方式。
一、开通服务ModelScope MCP广场
首先登录ModelScope MCP 广场 https://www.modelscope.cn/mcp ,可以使用手机号注册登录,或者github账号登录。登录以后,在账号设置里要先创建个人API令牌,之后在Cherry Studio中配置需要这个API值。
创建个人API令牌以后,再进入MCP广场,筛选 Hosted 类型的服务,之后从中选择需要添加的MCP服务器,这里以使用最多的Fetch MCP服务器为例,它提供获取网页信息的服务。
选中这个服务以后,双击进入到服务页面,然后点击右侧的连接选项,连接成功会显示出来SSE URL,这样就可以通过同步选项配置到Cherry Studio客户端。
二、配置Cherry Studio客户端
打开Cherry Studio客户端,进入设置MCP服务器页面,右上角多了一个同步服务器选项,打开这个选项进入配置页面,输入在ModelScope中创建的个人API令牌(这个API只需要输入一次),最后点击同步。同步以后,你会在本地MCP服务器列表里发现刚刚在ModelScope中开通的服务。
三、使用Cherry Studio客户端
进入对话窗口,选择 qwen-max-latest 模型作为对话模型,它支持的上下文窗口更大,然后选择同步过来的Fetch MCP服务。在对话窗口中,输入的问题是“百度热搜 有哪些呢?”让我们看看它的反馈结果如何呢,是不是还不错呢?
结语
这种方式进一步简化了MCP服务的添加,只需要在ModelScope中开通服务,在Cherry Studio客户端同步就行了。虽然使用很方便,不过它是有一定限制的,只支持 Hosted 类型的服务,像filesystem本地文件系统访问的mcp服务是无法通过这种方式添加的;如果Hosted类型的服务需要额外设置的话,比如高德地图是需要用户去高德主页上申请API Key的,这一步还是无法跳过的。随着我们对MCP服务的使用越来越多,对它的了解也越来越深入,只要我们在使用过程中注意这些事项,我们就能够更好的使用MCP服务,让它发挥出最大的作用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。