JACS︱多智能体驱动的机器人AI化学家

img

研究展示了多智能体驱动型机器人AI化学家的最新研发成果。构建了基于Llama-3.1-70B大语言模型(LLM)的分层多智能体系统–ChemAgents。ChemAgents整合了多种基于LLM的专用智能体,既可独立执行复杂科研任务,又能通过协同合作实现更高效能。该系统通过任务管理器代理与人类研究人员交互,并协调四个角色专用代理****——**文献阅读器、实验设计者、计算执行者和机器人操作员。每个代理分别利用四大基础资源:全面文献数据库、广泛协议库、**最先进的自动化实验室和多样化模型库。

ChemAgents的四大基础资源

每个代理分别利用四大基础资源:全面文献数据库、广泛协议库、多样化模型库和最先进的自动化实验室(图1)。

文献数据库:包含从Crossref下载的约120万篇化学与材料科学领域学术论文的标题与摘要,覆盖广泛的研究主题、方向及领域。

协议库(Protocol Library):由过去数年间通过自动化实验室中开展的实验不断积累而成。该库不仅包含历史实验的流程模板,还涵盖了实验室20个实验站点的多种配置方案(即使部分配置尚未实际使用)。这些协议以XML格式存储,使用自然语言描述实验步骤。实验站点功能覆盖液体分配、固体称量、磁力搅拌、干燥处理、红外光谱分析、X射线衍射、光催化、电催化等(完整列表详见支持信息)。这些协议与站点共同定义了自动化实验室在化学与材料合成、表征及性能测试方面的实验能力。

自动化实验室:配备两台机器人(一台全向移动机器人,一台台式机械臂)与20个具备人机交互接口的自动化实验站点,以及统一管理所有硬件的后端控制系统。移动机器人可在实验室内自由移动,主要负责跨仪器协同任务;台式机器人置于实验室中央可移动平台上,负责操控平台上的表征与性能测试仪器,包括拉曼光谱、X射线衍射、红外光谱、紫外-可见光谱、荧光光谱及电化学测试等。后端控制系统通过HTTP协议进行任务调度、数据管理,并与机器人及实验站点通信。

模型库:其中多数模型源自团队过往研究中的预训练模型,或专为机器人AI化学家通用需求开发。每个预训练模型均提供辅助功能模块,确保数据预处理(如标准化、缺失值处理)的一致性,并支持直接预测。这些模型附有详细技术规格与来源的注释,便于研究者或LLM代理查询。此外,模型库还包含开源模型,可根据特定研究任务需求,利用机器人AI化学家采集的实验数据进行实时训练。

img

图1

ChemAgents的四大角色代理

任务管理器:协调人类指令与四个角色代理的协作。

角色代理一:文献阅读器。通过外部自然语言处理(NLP)工具挖掘文献数据库,积累与实验目标相关的知识。

角色代理二:实验设计者。生成实验流程,结合协议库与实验室设备能力。

实验设计者的工作流程如下:首先,协议编写器接收来自任务管理器的目标实验描述,随后调用协议检索工具在协议库中寻找最佳匹配模板。若找到匹配模板,协议编写器将参考该模板调整步骤与参数,生成定制化实验流程;若无适用模板,则调用站点查询工具获取可用自动化站点列表,依托LLM自主规划实验流程。接下来,协议评审器启动反思机制,依据预设专家规则对协议编写器生成的流程进行审核、批判与优化。最终,协议评审器格式化输出以确保实验流程既符合实验目标,又与实验室实际能力相匹配。

角色代理三:机器人操作员。将实验流程转化为代码指令,驱动自动化实验室执行实验。

机器人操作员的工作流程如下:首先,代码编写器接收实验设计者生成的实验流程,调用RobotAPIQuery工具获取机器人可用API列表,并依托LLM能力编写Python代码。随后,代码评审器依据专家规则对代码进行审核与优化。改进后的代码传递至代码校对器,该代理再次调用RobotAPIQuery工具获取机器人API列表,并对代码进行最终校对与提升。最终,自动化实验室接收完善后的代码,执行化学实验的自动化操作。

角色代理四:计算执行者。调用预训练模型,进行数据驱动优化(如贝叶斯优化)。

计算执行者的工作流程如下:首先,计算任务管理器接收输入信息(包括实验任务关键词、详细描述及机器人实验结果)。随后调用模型检索工具获取合适预训练模型。根据具体任务需求,确定后续操作序列并执行以生成机器学习代码。此过程可能根据任务需求调用模型融合工具或贝叶斯优化器。最终,通过在深度学习计算平台执行生成代码获得预测结果。

通过智能体间的协作与协调,该系统显著提升了单一智能体的效能,使其能够共同攻克复杂任务并达成既定目标。

机器人AI化学家展现了其处理多种复杂度实验任务的多功能特性。通过执行六项涵盖"制备与表征"、"探索与筛选"以及"发现与优化"全流程的实验任务,系统验证了ChemAgents在生成实验流程、执行机器人实验、运用计算模型开展数据驱动发现与优化等方面展现的卓越适应性与精准性。

ChemAgents的应用实例

“制备与表征”类任务

任务1:要求使用傅里叶变换红外光谱(FTIR)表征三种偶氮苯分子。偶氮苯类分子因具有N=N双键连接苯环的结构而表现出光致异构特性。

任务指令:“请执行科研任务:测量偶氮苯、1-(苯基偶氮)萘-2-胺、4,4′-二羟甲基偶氮苯三种固体粉末的红外光谱,每种样本各测一次。”

img

接收到任务描述后,机器人AI化学家成功规划并采集了高质量的FTIR光谱(图2a)。结果显示,所有样本在1600–1500 cm⁻¹范围内均出现N=N键伸缩振动特征峰,同时在1500–1400 cm⁻¹(苯环C=C振动)和3100–3000 cm⁻¹(C–H振动)范围内检测到相应信号。

img

图2

任务2:要求合成研究者指定的金属氧化物,并通过粉末X射线衍射(PXRD)进行表征。机器人AI化学家成功合成了六种目标金属氧化物(ZrO₂、ZnO、WO₃、Mn₃O₄、CuO与Fe₂O₃),并采集其PXRD图谱(图2b)。通过将实验数据与标准PDF卡片对比,验证了目标产物的成功制备。

任务3:利用卤化铅钙钛矿(APbX₃)量子点(PQDs)的可调发射波长与光致发光特性,通过不同A⁺Pb²⁺(X⁻)₃组合(A = CH₃NH₃、(NH₂)₂CH或Cs;X = Cl、Br或I)实现广色域高纯度颜色输出。根据任务描述,机器人AI化学家按预设配方成功制备出蓝、绿、黄、红四色PQD墨水,将其涂覆成薄膜后测得荧光发射光谱,均显示出目标高纯度色域(图2c)。

“探索与筛选”类任务

相较于“制备与表征”任务,此类任务对LLM能力提出了更高要求。例如,任务管理器必须有能力解释需要深入了解特定领域知识的任务说明,实验设计者必须在调整现有方案时表现出灵活性和创造性。这可能需要根据实验要求为变量分配不同的值,并通过扩展或组合来定制规程,以适应更复杂的实验设计。例如,它可能需要整合不同方案中的多个实验步骤,或调整程序细节以符合特定的研究目标。

任务4:要求机器人AI化学家执行全因子实验合成石墨相氮化碳(g-C3N4)并测试其析氢反应(HER)性能。演示任务中,系统被设定考察三种煅烧温度(500、550及600 °C)与三种煅烧时长(3、4、5 h)的组合。通过测定不同合成条件下g-C3N4的HER性能,揭示煅烧条件对材料质量的影响,强调参数筛选对优化g-C3N4析氢性能的重要性。如图2d所示,所有煅烧时长下,600 °C高温均导致g-C3N4结构降解或过烧结现象;此外,延长煅烧时间在所有温度下均对HER性能产生负面影响。

任务5:探究了铋卤氧化物(BiOX,X = Cl、Br或I)对水中四环素(TC)有机污染物的光催化降解性能。这类化合物储量丰富、毒性低且具有适宜可见光吸收的带隙,是多种光催化应用的理想候选材料。具体而言,机器人AI化学家被设定研究铋卤化物中卤素原子种类对TC光催化降解的影响。图2e显示,BiOBr对TC的光催化降解速率最快,其次是BiOCl,最后是BiOI。BiOBr在降解TC中的优异性能归因于其适宜的带隙(约2.7至3.1 eV),较BiOCl的带隙(约3.5 eV)更窄,使其能够更有效地吸收光能。尽管BiOI的带隙最窄(约1.7至1.9 eV),但其光催化活性最低,这可能是由于电子-空穴对的快速复合所致。

“发现与优化”类任务

此类任务是当前机器人AI化学家可执行的最复杂研究任务,需调用全部四个角色代理及其对应基础资源。

任务6:以发现析氧反应(OER)用金属-有机高熵催化剂(MO-HECs)为例,整个流程始于向任务管理器发出的单条指令:

img

“现分配科研任务:发现包含五种金属元素的高性能金属-有机高熵催化剂(MO-HECs)用于析氧反应(OER)。请通过文献阅读器识别文献中OER常用金属元素并推荐前五名。自动化实验室已配备必要前驱体溶液与其他化学品。请通过随机采样选取100种五元金属组合(各金属比例5%–35%),完成其合成与过电势测量。获取100组实验数据后,调用计算执行者进行优化:基于这100组成分与过电势数据,结合预训练模型构建融合模型以预测成分-过电势关系;随后将该融合模型与贝叶斯优化联用,在金属比例总和为100%、各组分5%–35%约束条件下搜索预测过电势最低的成分;最终根据优化结果合成并测试最优成分。”

计算执行者将训练后的融合模型与贝叶斯优化器结合,通过虚拟实验筛选具有更低过电势的MO-HECs金属成分。在获得预测过电势最低的最优成分后,该结果被传递至实验设计者与机器人操作员进行实验合成与测试。最优成分的MO-HEC在10 mA cm⁻²电流密度下表现出266.1 mV的过电势,相较于随机筛选的100种成分有显著提升。

图2f展示了101种实验测试MO-HECs的金属成分空间在二维UMAP投影中的分布。图中邻近的点代表基于欧氏距离成分更相似的组合。可视化结果表明,通过机器人AI化学家计算能力筛选的最优催化剂成分与随机样本中的最佳催化剂存在显著差异。此外,UMAP二维嵌入显示,成分相近的催化剂(图中邻近点)可能表现出截然不同的过电势值。这种成分-活性弱关联性凸显了在该化学空间中探索高性能催化剂的挑战,同时也验证了本方法在识别此类催化剂方面的有效性。

该系统通过资源整合与智能体协同,实现了从知识发现到实验验证的全链条自主科研能力,为加速化学与材料科学领域的发现进程提供了创新解决方案。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 高影响因子普通期刊的选择 在学术研究中,选择高影响因子的普通期刊对于提升研究成果的认可度至关重要。以下是几个常见的领域及其对应的高影响因子普通期刊列表: #### 自然科学领域 - **Journal of the American Chemical Society (JACS)** JACS 是化学领域的顶级期刊之一,涵盖了广泛的化学学科主题,其影响因子通常保持在高水平[^3]。 - **Angewandte Chemie International Edition** 这是一份国际知名的化学期刊,专注于基础和应用化学的研究成果,具有较高的影响力。 #### 生命科学领域 - **Molecular Cell** Molecular Cell 主要发表分子生物学、细胞生物学及相关领域的高质量研究论文,影响因子稳定在较高水平。 - **Cell Reports** Cell Reports 提供了一个开放获取的平台来展示生命科学研究的新发现,尽管相较于 Cell 正刊稍低,但仍属高影响因子范畴。 #### 工程与技术领域 - **Advanced Materials** Advanced Materials 聚焦于材料科学和技术进步方面的突破性工作,拥有非常高的引用量和支持率[^5]。 - **Nano Energy** Nano Energy 致力于纳米能源转换存储器件的基础理论探索及实际应用开发等方面的内容报道,近年来影响因子持续上升。 #### 计算机科学领域 - **IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)** TPAMI 是模式识别与机器智能方向最具权威性的期刊之一,长期占据该领域最高位置。 - **ACM Computing Surveys (CSUR)** CSUR 发表关于计算领域的全面综述文章,因其详尽深入而备受推崇,同样具备很高的学术价值。 需要注意的是,虽然上述列举了一些具体例子,但每年各杂志的实际表现可能会有所波动,因此建议定期关注最新的统计数据以获得最准确的信息[^4]。此外,还可以利用 Web of Science 数据库或者 LetPub 平台查询目标刊物的具体情况以便做出更明智的选择[^1]。 ```python import pandas as pd # 假设我们有一个包含期刊名称和对应影响因子的数据框 df df = pd.DataFrame({ 'Journal': ['JACS', 'Angewandte Chemie', 'Molecular Cell', 'Cell Reports', 'Advanced Materials', 'Nano Energy', 'TPAMI', 'CSUR'], 'Impact Factor': [16.383, 16.823, 17.026, 9.423, 32.082, 19.069, 24.334, 10.659] }) print(df.sort_values(by='Impact Factor', ascending=False)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值