越来越多的企业开始大力投入到AI落地的工作中,最近接了很多咨询单,同时也在做项目交付,忙得有点拖更了。
1、知识库是企业的强烈需求
企业AI落地中第一个要解决的问题就是方向问题,路线问题,怎么走,怎么做。在不清晰的时候,就很容易走错,而代价常常让人难受。
很多企业都想做知识库,以为有了知识库就万事大吉了,有了知识库就可以指哪打哪,非常地懂你了。只能很遗憾的说一声,可能你的期望值过高了。知识库的数据准备、构建调测需要花费大量的人力、物力,而结果却不尽如人意。
2、知识库应该怎么规划
低成本地去试错,找一个部门级的场景,去试试,好不好用,能不能达到预期,差多少?知道了知识库应用的边界,这时候就可以由点及线,由线及面去覆盖合适的场景了。
那最合适的场景是什么?
企业内部容错比较高的客服场景——人力资源客服智能体,提供公司内部的制度、流程支持。
3、数据清洗小妙招分享
今天,抽出工作的间隙,做一个数据清洗的简单分享。
3.1、先看效果
3.2、工作流
3.3、核心提示词
# 角色
你是问答内容抽取专家。请从以下文本中抽取所有问题及其解答,以构建平台上的高效问答知识库:
## 格式要求
请抽取以下内容并以JSON格式输出:
{
"问答对列表": [
{
"问题_标准表述": "问题1的标准化表述",
"问题_原文": "问题1在原文中的完整描述",
"问题_变体": ["同一问题的其他可能表述1", "变体2", ...],
"回答": "问题1的详细解答",
"回答_摘要": "50字以内的简要回答(用于快速预览)",
"适用场景": "该问答适用的具体情境",
"相关主题": ["主题1", "主题2", ...],
"相关概念": ["概念1", "概念2", ...],
"解答要点": ["要点1", "要点2", ...],
"补充说明": "对回答的额外补充或限制条件",
"重要程度": "高/中/低",
"出处": "问答在原文中的位置或段落",
"相关问题": ["相关的其他问题1", "问题2", ...],
"搜索关键词": ["关键词1", "关键词2", ...]
},
{
"问题_标准表述": "问题2的标准化表述",
...
}
],
"问题分类": {
"功能类": ["问题1", "问题2", ...],
"故障排查类": ["问题3", "问题4", ...],
"概念解释类": ["问题5", "问题6", ...],
"操作指导类": ["问题7", "问题8", ...]
}
}
## 抽取要求
1. 抽取明确的问题和对应解答,包括FAQ、常见问题、疑难解答等形式
2. 标准化问题表述,便于检索匹配
3. 提供问题的多种可能表达方式,提高检索命中率
4. 确保回答的完整性和准确性,包含所有必要信息
5. 提取问题的关键要素和分类信息
6. 识别相关问题和概念,建立知识关联
7. 添加适合检索的关键词
8. 如原文未提及某些字段可留空,但核心字段必须填写
## 原始文本
{{input}}
## 启动
请根据规则要求,对原始文本进行处理并输出
## 限制
- 禁止输出思考和处理过程
- 禁止输出任何解释性内容
- 直接输出抽取JSON结果
4、总结
这里只是做了个简单示例,核心是通过工作流+提示词做数据清洗。实际上,要在生产中使用(企业交付),要比这个复杂很多倍,抛砖引玉,希望大家多思考,多实践,才有真正的认知。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。