下一代软件交互:传统应用如何进化成AI Agent?

现在每天我们都在跟各种电子产品、软件打交道,但是,不知道你们有没有意识到一个很恐怖的事情。很多时候,不是产品服务我们,我们可能成了软件的学徒。下图是一个微波炉的启动面板。

img

为了完成一个简单的事情,得记住一堆按钮在哪,哪个菜单有什么功能,点来点去,心累!

今天给家人们分享一个有意思的初创公司,Adopt AI。 刚融了600万美金,他们在做一个非常有变革性的事情:重新定义我们使用软件的方式,让所有应用都能通过自然语言交互完成任务,并且对于软件本身几乎没有接入成本。

听起来非常的科幻,但是经过我深入了解了一下,发现还有点意思!

Adopt AI 揭秘

先来看看 Adopt AI 的底气何在。这轮 600 万美元的种子轮融资由 Elevation Capital 领投,还有 Foster Ventures、Powerhouse Ventures、Darkmode Ventures 等一众知名天使投资人跟投。 创始人CEO Deepak Anchala、CTO Rahul Bhattacharya 之前是Slintel创始人,融资了2600万美元,卖给了6sense 。创始人 Anirudh Badam曾是微软的 AI 的研发总监,斯坦福计算机博士学位。

img

那么,Adopt AI 的核心产品是什么呢?简单来说,他们提供了两大功能:Agent Builder 和 Agent Experience。

比方说,你有一款现成的企业软件,功能很强大,但操作界面有点复杂。Agent Builder ,它能以无代码的方式,自动去学习你这款软件的应用结构和API接口,然后“唰唰唰”地自动生成各种能通过自然语言指令调用的操作(Actions),比如创建、读取、更新、删除数据(CRUD),或者导航到某个特定页面,甚至是执行一些分析任务。

img

img

官方表示,这能让你的应用在短短几天内就拥有 AI Agent 的能力,而不是传统方式需要的数月甚至数年!这个 Builder 里还包含了不少实用工具,比如让你可以用自然语言定义操作的“动作构建器”,以及能实时监控性能的“仪表盘日志”。

img

有了这些自动生成的 Actions,Agent Experience 就派上用场了。它是一个可以无缝嵌入到你现有应用中的 AI 对话界面。用户不再需要去点击那些密密麻麻的按钮,直接自然语言交互,AI Agent 就会自动理解你的意图,调用预设好或者它自己生成的工作流,一步到位完成任务。做到了“你只管说,剩下的交给AI”。

img

官网提到,Adopt AI 采用了一种叫做 Pass-through 的技术架构。简单来说,就是尽量不碰你的业务数据,用户的对话数据在传输和存储时都会加密,而执行操作所需的 API 调用,很多时候都是在用户自己的浏览器客户端进行的。这样做的好处显而易见:既减轻了后端服务器的压力,也大大降低了数据泄露的风险,让企业用起来更安心。

img

Adopt AI 价值主张很清晰:零代码快速部署,大幅提升软件使用效率,显著降低企业成本。企业不需要投入庞大的研发资源从头改造现有系统,就能快速给产品装上一个智能的“AI copilot”。

这种思路,直接命中了许多企业的痛点。通过把这些沉睡的功能唤醒,让软件真正为用户创造价值。

Spendflo 的 CTO兼联合创始人 Ajay Vardhan 说:

“Adopt 从根本上改变了我们思考产品构建的方式……它让我们能够专注于核心产品开发,而 Adopt 则处理 AI 的繁重工作。”

AI Agent 的本质:不止是聊天机器人,更是软件交互的范式革命

过去我们从命令行过渡到图形化界面。

在 20 世纪 60 年代和 70 年代,大多数交互都通过命令行界面(CLI)进行,用户输入确切的文本命令来执行功能。

img

20 世纪 80 年代我们见证了图形用户界面(GUI)的兴起,由 Xerox PARC 开创,并由苹果公司在 1984 年的麦金塔电脑中普及,引入了现在熟悉的窗口、图标、菜单和指针范例。

img

到了 1990 年代和 2000 年代,这种模式已经变得无处不在,从 Windows 95 到移动端界面。

在整个进程中,有一个不变的因素——人承担了所有的学习和适应

ChatGPT将语言这种新的交互范式带到了我们的面前。2022 年底chatgpt推出,迅速火遍全网,向全球用户展示了基于语言的界面,带来的强大和便利性。

img

微软CEO Satya Nadella 说过 “人类语言是新的 UI 层”。

我们不再学习软件如何工作,而是进入了一个软件学习我们如何交流的时代。

从基于界面的交互到基于意图的交互。 用户不再需要详细规划如何一步步完成任务,只需要清晰表达我想要完成什么任务。

这就像以前我们给计算机下达的是精确到每一步的指令,而现在我们只需要告诉它我们的目标,让计算机自己去规划和执行路径。

我觉得,这种转变的意义,不亚于当年从繁琐的命令行操作进化到直观的图形用户界面。图形界面解放了我们的记忆力,不用再去背那么多复杂的命令;而 AI Agent 则更进一步,解放了我们的操作能力,让我们从执行者变成了指挥者。这种交互方式更贴近人类自然的思维和沟通习惯,无疑会大大降低技术的使用门槛。

重构传统软件,垂直Agent风口已至

如今,我们已经越来越习惯通过语言和各种智能助手交流,比如手机上的语音助手、智能音箱等等。这种便捷的体验,反过来让我们对传统软件、产品那些繁琐的点击操作容忍度越来越低。

“既然我可以直接说出我想要什么,为什么还要去记住那么多按钮和步骤呢?” 这种用户期望的转变,在2c的领域已经非常明显,现在也开始逐渐渗透到2b市场。用户不再愿意花费大量时间去学习复杂的界面,他们期望软件能更“聪明”一点,主动理解他们的需求。

企业开始越来越关注软件投资回报率的问题。企业在软件采购上投入不菲,但如果员工因为软件太难用,只使用了其中一小部分功能,那么大部分投资实际上就被浪费了。AI Agent 通过自然语言交互,极大地提高了软件所有功能的可访问性,使得那些原本深藏不露的高级功能也能被普通员工轻松使用。

Adopt AI 在他们的宣传材料中也明确指出了这一点:“提高软件采用率和保留率。降低支持和开发成本。实现更大的投资回报率和业务成功。” 这直接戳中了企业 IT 决策者的痛点,也解释了为什么他们会对这种新型解决方案抱有浓厚兴趣。

这些因素的叠加,共同催生了这个垂直领域 Agent 的发展。

最后

从商业模式的角度看,软件公司也将从过去主要 销售功能列表 转向更多地 销售结果和解决方案 。用户不再仅仅关心你的软件有多少个功能点,而是更关心它能帮他们高效地解决多少实际问题、完成多少关键任务。

从强调“我们有什么”转向强调“我们能为你做什么”。Adopt AI 的宣传中反复强调“从提示到结果”(Turn Prompts Into Outcomes)的概念。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值