IF 24 | 子刊,多模态融合的全肿瘤AI系统

img

文章题目:

Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence

中文标题:使用多模态真实世界数据和可解释人工智能解码泛癌种治疗结局

摘要

尽管精准肿瘤学取得了进展,但临床决策仍依赖于有限变量和专家经验。为突破这一局限,我们通过融合多模态真实世界数据与可解释人工智能(xAI),推出了用于临床决策支持的人工智能衍生(AID)标志物。研究团队运用xAI技术解码了15,726名涵盖38种实体肿瘤患者(基于350项标志物)的临床结局,这些标志物包括临床记录、影像衍生的身体成分分析和肿瘤突变图谱。xAI不仅量化了每位患者临床标志物的预后贡献度,更筛选出114个关键标志物——它们构成了神经网络决策过程90%的依据。此外,xAI技术还揭示了1,373组标志物间的预后相互作用关系。本方法已在美国全国性电子健康记录数据库的3,288名肺癌患者独立队列中得到验证。该研究成果证实,xAI有望重塑临床变量的评估范式,推动肿瘤诊疗进入个性化、数据驱动的新时代

1.0 背景

尽管现代医疗中每位患者都可获得大量多模态临床数据,个性化医疗的愿景却仍未实现。单一标志物研究无法充分揭示患者与肿瘤特异性变量之间决定预后的复杂相互作用。因此,许多现有工具要么未能投入临床实践,要么未能整合反映独特疾病背景的完整临床数据。

突破这一局限性的有效策略是整合多源临床数据,包括病史、实验室检测结果、影像学数据和组学分析等。随着机器学习的进步和数字化可访问数据的日益普及,大规模建模预后标志物间的复杂关系成为可能。结合可解释人工智能(xAI)这一理解模型决策的新方法,我们能够评估个体患者预后并解析各变量的贡献。

本研究基于大规模真实世界数据(RWD),提出了一种解码预后特征的创新方法。我们利用深度神经网络建模患者结局,并应用xAI方法——逐层相关性传播(LRP)技术,解析每项临床信息对个体预后的影响。数据集涵盖15,726例接受系统治疗的癌症患者(涉及38种癌症类型)的多模态数据,包括临床检查、实验室检测、临床记录、CT影像衍生的身体成分指标及遗传数据。

现有临床预测因子多局限于特定癌种,未能纳入跨癌种关联。然而,现有数据表明,患者间的相似性远超组织学肿瘤类型,这使得跨癌种临床试验日益增多。

通过泛癌种数据集训练深度学习模型,神经网络可学习跨癌种的预后关联。这有助于开发无需先验知识即可揭示临床相关生物标志物特征的综合模型。该方法能辅助临床医生优先处理关键患者特异性信息并优化治疗策略,为符合法律要求的透明化xAI辅助决策铺平道路。我们在包含3,288例肺癌患者的外部真实世界数据集(源自美国全国性电子健康记录去标识化数据库)中验证了该xAI方法的可重复性与有效性。

随着真实世界数据的日益丰富和可及性提升,其临床应用潜力正不断显现。本研究进一步证明,xAI能够基于多模态真实世界数据解码患者结局,并提供个性化治疗指导。

2.0 结果

结果分成8段,层层递进,分别是Cohort definition;Development of pan-cancer models for outcome prediction;xAI reveals complex prognostic relationships between markers;AID markers for patient-level treatment guidance;Evaluation of established scoring systems;Assessment of marker importance at the cohort level;Cross-cohort comparison of prognostic markers;Evolution of marker importance during disease progression。

2.1 队列定义

我们回顾性评估了来自德国最大综合性学术癌症中心之一——埃森大学医院西德癌症中心的150,079例癌症患者的医疗记录数据。最终纳入分析的是2007年4月至2022年7月期间(中位时间:2016年11月)接受系统治疗的15,726例患者(女性占44.3%,见扩展数据图1)。最常见的癌症类型包括肺癌(4,320例)、肉瘤(1,578例)和乳腺癌(1,223例,详见附表1)。

为计算总生存期(OS),我们对7,349例患者(46.7%)进行了删失处理;为计算至下次治疗时间(TTNT),对5,638例患者(35.9%)进行了删失处理。基线时有7,965例患者以结构化格式记录了转移状态(M分期),其中5,606例为转移性癌症(M1)患者,2,359例为接受系统治疗的局限性或局部晚期癌症(M0)患者。通过治疗前腹部CT图像,我们自动评估了5,395例患者的身体成分指标。

本研究共纳入350个变量,涵盖多模态数据及患者与肿瘤特异性指标,全面刻画了患者在本机构首次接受系统治疗前的临床特征(图1)。

2.2 泛癌种预后预测模型的开发

我们训练了两个神经网络模型,根据患者首次在本机构接受系统治疗时的医疗档案,分别预测总生存期(OS)和至下次治疗时间(TTNT)。通过五折交叉验证,我们证实了这两个预测模型的可靠性——每折数据中80%用于训练模型,10%用于超参数调优,10%用于测试(校准结果见扩展数据图2)。

在泛癌种数据集中,生存预测模型的平均一致性指数(C-index)达到:OS预测0.762(各折区间0.758-0.764),TTNT预测0.711(0.702-0.718)(图2a)。当对每种癌症类型(测试集每折≥20例患者)进行独立验证时,模型表现存在差异:OS预测在眼部肿瘤中表现最佳(C-index 0.804,范围0.771-0.860),而TTNT预测在直肠癌中表现最优(0.756,0.644-0.800)。

与单一癌种模型相比,泛癌种训练显著提升了预测性能(OS平均C-index:0.75 vs 0.72,P<0.001;TTNT平均C-index:0.70 vs 0.68,P<0.001)。仅黑色素瘤患者例外,其单一癌种模型表现略优(OS:0.74 vs 0.75;TTNT:0.69 vs 0.70,P>0.05)。这表明泛癌种模型通过整合跨癌种共有预后信息,获得了更稳健的预测能力。基于大规模真实世界数据训练的神经网络,成功将测试集患者分层为不同的跨癌种风险组(图2b)。

与常用预后评分系统相比,xAI模型展现出显著优势(图3a-h):
• 对比UICC分期(OS:0.75 vs 0.56;TTNT:0.70 vs 0.54,均P<0.001)
• 对比ECOG体能状态评分(OS:0.81 vs 0.67;TTNT:0.72 vs 0.62,P≤0.001)
• 对比Charlson合并症指数(OS:0.75 vs 0.63;TTNT:0.69 vs 0.61,均P<0.001)
• 对比改良格拉斯哥预后评分(OS:0.76 vs 0.59;TTNT:0.70 vs 0.56,均P<0.001)

为便于临床实施,我们构建了仅含10个自动筛选变量的简化Cox模型(图3i-j)。无论在完整训练集(平均C-index:0.75 vs 0.69)还是特定癌种数据(0.75 vs 0.59)中,泛癌种xAI模型均显著优于简化模型(均P<0.001)。

2.3 可解释人工智能揭示标志物间复杂预后关系

在建立可靠的预后预测模型后,我们应用可解释人工智能(xAI)技术解析个体患者临床信息如何影响神经网络的预后评估。由于泛癌种模型整体表现更优,我们选择对其进行解释。采用逐层相关性传播(LRP)这一xAI方法,因其能以较低计算成本为个体患者生成稳健的解释。LRP为每例患者的每个临床变量(如实验室指标或合并症)计算风险贡献度(RC),表明其对预后良好或不良的预测贡献,由此生成包含原始数值和LRP分配RC的双维度AI衍生(AID)标志物——正RC值提示不良预后贡献,负RC值则提示良好预后贡献。

通过分析全体患者的AID标志物,我们揭示了神经网络如何评估标志物与患者风险的关联(图4a)。例如:年龄增长和C反应蛋白(CRP)升高强烈提示不良预后,而游离三碘甲状腺原氨酸(fT3)高水平、PD-L1肿瘤比例评分(TPS)高值及CT测定的腹部肌肉体积较大则预示良好预后。

我们使用Flatiron Health提供的3,288例非小细胞肺癌(NSCLC)患者外部数据验证了部分标志物结果。应用相同方法发现,内部与外部数据集的RC线性化斜率高度相关(Pearson’s r=0.9,P<0.001;扩展数据图3a),表明xAI对标志物风险影响的预测具有跨数据集一致性。为验证LRP结果与传统模型的一致性,我们将xAI的线性化效应与标准Cox比例风险模型对比,发现内部和外部数据集的标志物关联均与风险比显著相关(内部数据集:r=0.93;外部数据集:r=0.97;均P<0.001;扩展数据图3b-d)。

值得注意的是,即使标志物数值相同,不同患者的RC值也存在显著差异。通过LRP分析,我们揭示了标志物相互作用对RC变异的部分解释(图4b)。在8,294组标志物对中,1,373组(16.6%)存在显著交互作用。例如:CRP的RC值随血小板计数变化而动态改变——血小板降低时CRP的高RC效应更显著(ΔRC斜率:×0.07,P<0.001),而血尿素氮(BUN)对CRP-RC的影响较弱(ΔRC斜率:0.03,P<0.001),天冬氨酸转氨酶(AST)则无显著交互作用(ΔRC斜率:-0.006,P=1.0)。

内部与外部数据集间显著交互作用呈现高度相似性(r=0.59,P=0.021;扩展数据图3e)。与传统混合效应Cox模型的对比验证显示,xAI识别的交互作用方向与传统模型一致(内部数据集:r=0.91,P=0.03;外部数据集:r=0.69,P=0.009;扩展数据图3f-g)。这表明LRP方法不仅在不同数据集中具有高度可重复性,还与简化关系的经典统计模型相容。但xAI的独特优势在于能基于患者个体化疾病背景,实现非线性RC分配。

(TTNT相关结果见扩展数据图4a-b)

2.4 AI衍生标志物在个体化治疗指导中的应用

AI衍生(AID)标志物通过整合标志物数值与其LRP分配的风险贡献度(RC),为临床医生提供了包含上下文风险评估的增强型临床信息。如图5所示,"临床医师指南"可清晰展示个体患者的AID标志物谱,我们通过4例典型病例展示其实际应用场景:

病例1
不良预后因素:年龄、BMI、体重、fT3水平(均显示正向RC)
保护性因素:淋巴细胞与血小板计数升高(负向RC)
关键恶化因素:呼吸困难、吞咽障碍、疼痛及晚期T/M分期
转移灶特异性分析:肝转移较肺/骨转移表现出显著更强的负面预后影响
综合评估显示,神经网络基于全维度数据预测该患者预后极差

病例2
主要风险驱动:淋巴细胞减少与高龄
风险缓冲因素:合并症较少,且未出现肝转移(负向RC)
关键不良影响:胸腔积液(最强负面贡献)
治疗积极因素:帕博利珠单抗治疗显示保护性RC
最终风险评估为中等风险

病例3
传统警示指标:CRP升高(常规认为需加强监护)
xAI差异化解读:因伴随血小板计数高值及尿素氮低水平(参见图4交互作用),该指标未显示负面RC
体现xAI对传统指标的语境化解析能力

病例4
体成分分析

  • 中等内脏脂肪组织(VAT)→ 保护性贡献

  • 低皮下脂肪组织(SAT)→ 风险性贡献
    基础条件优势:极少合并症且无转移灶
    整体预后评估为良好

- 2.5 现有评分系统的评估

我们的研究结果揭示了基于单一标志物的预后预测模型的局限性,并强调了在由其他标志物构成的疾病背景下综合考虑预后变量的重要性。然而在临床实践中,通常仅依赖少数评分系统(如TNM分期)来评估预后并指导治疗。基于这些评分系统,患者往往被机械地分类,而忽略了性别、营养状况或合并症等根本差异。

为评估评分系统对疾病背景的依赖性,我们分析了各项评分与LRP算法计算的复发风险(RC)之间的相关性(扩展数据图4c)。东部肿瘤协作组体能状态评分(ECOG PS)(r=0.87)、M分期(r=0.92)和N分期(r=0.76)与计算的RC呈较高正相关,表明这些指标对预后的影响不受其他标志物干扰。而肿瘤分级(r=0.02)和T分期(r=0.07)与RC的微弱相关性则提示,这两项指标需要结合其他标志物进行综合解读。

- 2.6 队列水平的标志物重要性评估

在反映临床实际的多模态真实世界数据集中,既可能存在预后相关性较低的次要标志物,也可能存在对患者普遍高度关键的核心标志物。为量化队列中标志物的重要性(MI),我们采用与领域内其他方法一致的标准,计算了复发风险(RC)的绝对值。研究发现,在350个标志物中,90%的LRP评分集中在最重要的114个标志物上(扩展数据图5a, b)。

在所有患者中,对总生存期(OS)预测最重要的标志物包括:

  • C反应蛋白水平(CRP)(平均MI:0.071)
  • 游离三碘甲状腺原氨酸(fT3)(平均MI:0.066)
  • ECOG体能状态评分(ECOG PS)(平均MI:0.061)
  • M分期(平均MI:0.058)
  • 乳酸脱氢酶(LDH)(平均MI:0.055)(扩展数据图6a, b)

这些结果与既往研究报道一致,但我们的数据表明,fT3在预后评估中的作用可能比当前临床实践所认知的更为重要

某些癌症亚组中的罕见事件,在泛癌数据集中可能足够普遍,使模型能评估其预后影响。LRP可分析合并症(按ICD编码定义)和医疗干预(按德国手术与操作分类系统OPS定义)在疾病背景中的作用(扩展数据图6c, d)。由于单一合并症样本量有限,MI在此参考价值较低,因此我们报告受影响患者的平均RC。

对不良预后贡献最大的合并症包括:

  • 疼痛(平均RC:0.064)
  • 呼吸功能异常(平均RC:0.064)
  • 腹水(平均RC:0.056)
  • 呼吸/消化道继发恶性肿瘤(平均RC:0.048)
  • 胸腔积液(平均RC:0.046)

值得注意的是,部分诊断(如心力衰竭、胃炎和十二指肠炎)与良好预后相关。

RC最高的医疗干预措施包括:

  • 输尿管支架置入术(平均RC:0.074,可能提示狭窄性病变)

  • 脑膜重建术(RC:0.049)

  • 2.7 跨队列预后标志物比较分析

    通过泛癌数据集模型训练和LRP样本级解释,我们得以探究不同患者亚组间标志物重要性(MI)的差异(图6)。

    如预期所示,LRP识别出许多已在特定癌种预后中得到验证的标志物:

    • CA19-9在小肠癌及胆道癌中MI最高
    • 胆红素成为肝癌、胰腺癌和胆道癌的关键标志物(参考文献30-32)
    • 肝转移对甲状腺癌、直肠乙状结肠交界处癌及其他消化道癌最具预后意义(参考文献33-34)
    • HbA1c在胰腺癌和肝癌中权重最高(参考文献35-36)
    • 肿瘤标志物CEA在直肠乙状结肠交界处癌、结肠癌和甲状腺癌中MI最显著(参考文献37-38)

    值得注意的是,这种跨癌种研究方法还揭示了诸多尚未被探索的预后关联:

    • 腹部肌肉体积(基于CT体成分分析)对外阴癌、子宫癌和睾丸癌预后影响最大
    • AST在尿道癌中表现出极高MI值,其次在预期中的肝癌和眼癌(主要为葡萄膜黑色素瘤)中也保持高MI
    • 丙氨酸转氨酶对外阴癌和卵巢癌患者的预后分层最具价值
    • ECOG PS对胰腺癌、前列腺癌和肝癌尤为重要
    • 除已知的甲状腺癌和脑癌外,fT3在睾丸癌预后中显示出突出重要性(参考文献39-40)

    至下次治疗时间(TTNT)相关结果详见扩展数据图7。

- 2.8 疾病进展过程中标志物重要性的演变

在探究了癌症实体特异性标志物对预后的影响后,我们进一步探索了这些标志物在疾病进展过程中对预后评估的动态重要性。通过将 deceased patients 按总生存期(OS)排序,我们能够沿着 pseudo timeline 追踪 LRP 算法分配的标志物重要性,并观察到治疗过程中显著的变化(图7)。ECOG PS(体能状态评分)、CRP(C反应蛋白)和LDH(乳酸脱氢酶)水平在所有癌症实体中始终是高度预后相关的标志物。短期OS患者的预后受血清总蛋白浓度影响尤为显著,这可能反映了疾病晚期阶段(特别是肝肾)器官功能障碍的临床相关性。凝血指标凝血酶原时间和血氧饱和度对短期OS患者具有强预后价值,但对长期OS患者贡献较小。M分期(远处转移)整体具有决定性意义,但其重要性在短期OS疾病阶段有所下降。

我们的模块化方法生成了可解释的、具有不同预后特征的患者亚组 Kaplan-Meier 曲线。在肺癌中,动脉血氧饱和度对多数患者最具重要性,但对短期生存患者而言,蛋白质表达、CRP和ECOG PS成为更关键指标。远处转移(M分期)的重要性通常高于淋巴结转移(N分期)和原发肿瘤分期(T分期)。值得注意的是,转移灶的重要性随疾病进展逐渐降低,在仅存活数月的患者中被T/N分期超越。LDH在睾丸癌和黑色素瘤中表现出文献已充分证实的超高重要性[41,42],且在疾病后期重要性持续上升。在肝癌患者中,AST(天冬氨酸转氨酶)、总蛋白、GGT(γ-谷氨酰转移酶)、凝血酶原时间和LDH的重要性随疾病进展递增,而丙氨酸转氨酶对生存期超过一年的患者影响较弱。

我们还评估了癌症特异性生物标志物的预后价值(扩展数据图8)。PD-L1 TPS(肿瘤比例评分)是肺癌最重要的特异性标志物,这与免疫检查点抑制剂疗法的疗效相符[43]。头颈癌中,肿瘤标志物SCC(鳞状细胞癌抗原)的重要性随疾病进展不断提升。肝癌标志物AFP(甲胎蛋白)在整个病程中保持高重要性,但CA19-9和CA125在终末期的预后价值显著增强。

关于至下次治疗时间(TTNT)的分析结果详见扩展数据图9-10。

  • img

    img

    img

    img

    img

    img

    img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值