今年是 Agent 元年,字节、腾讯、阿里等大厂,以及用友、金蝶等老牌软件公司都纷纷推出了 Agent 产品。
然而,虽然 Agent 产品呈井喷态势,但很多产品都陷入了“客户不愿意付费”的困境。
究其原因,核心还是方向选择的问题:选错了方向,Agent 就很难发挥出预期价值,客户自然就不愿意付费!
那么,到底有哪些 Agent 产品已经跑通了成规模的商业化呢?
今天这篇文章给你答案!
1、AI 编程
AI 编程是大模型在企业落地的第一大场景。
一位十几年经验的技术朋友告诉我,AI编程至少可以帮他提高 50% 的开发效率。而另一位创业公司 CTO 则告诉我:有了 AI 编程,他们已经不需要初级开发人员了。
更重要的是,AI 编程不仅提高了“开发者”的效率,而且开拓出了“非开发者”用户。
举个例子,一位创业者告诉我,他们的设计师已经开始利用 AI 编程直接生成前端页面。
当然了,AI 编程并不完美。
比如,目前AI 编程更多用于“新程序”的编写,但是对“已有程序”的迭代,则效果不佳。
核心原因在于:成熟的企业软件往往经历了长期迭代,代码之间的关系已经非常复杂,修改任何代码,都必须考虑对其他功能的影响,可谓是“牵一发动全身”。
而目前的大模型还无法做到在“修改局部代码”的同时,还不破坏原本的软件功能。
因此,虽然 AI 编程已经非常强大,但远非完美,创业公司仍有机会。
2、AI 客服
AI 客服也是企业普遍愿意付费的场景,包括营销外呼、售后服务等。
AI 客服的优点,不仅仅是节省人力,更重要的是:在人力不足的背景下,可以大大提升对客户的响应速度。
一位 SaaS 公司的客户成功负责人告诉我:在以前,由于客户成功经理人手不足,大量普通用户的咨询无法得到及时回应。AI 客服上线以后,这些用户的问题基本上都是“秒回”,满意度大大提升。
当然,这并不意味着 AI 客服是完美的。
实际上,AI 客服的本质是“向量检索”,即根据用户的问题去匹配“相似内容”,但很多问题在知识库中并不存在“能够直接检索到的答案”。
比如,一些复杂的技术问题,AI 客服往往就会乱说一通。
另外,当用户的咨询带着强烈情绪,AI 客服往往无法准确识别用户意图,更不要说“有温度的回应”。
这就导致在很多场景下,AI 客服给用户的感觉更像是“人工智障”。
要解决这些问题,首先是要对用户和问题进行分级。
以前面提到的 SaaS 公司为例,他们更多是用 AI 客服满足普通用户的咨询。
而核心用户的问题往往比较复杂,因此仍然会延续“真人客服”的服务模式。
另外,即便是对于普通用户,也必须赋予用户“随时转人工客服”的能力,这样才能有效规避 AI 客服的缺点。
3、AI 员工助手
多位 SaaS 公司创始人都告诉我,员工助手是目前他们卖得最好的 AI 产品。
首先,“员工咨询”确实是一个普遍的业务场景,比如咨询年假、查询快递等等。
另外,和传统的机器人相比,AI 员工助手的用户体验和维护效率,也确实有很明显的提升。
因此,很多企业都愿意为这样的产品买单。
不过,AI 员工助手仍然存在两个问题。
首先,员工咨询的范围很广,对信息实时性的要求也很高。
比如,员工除了咨询考勤政策等静态问题,还会咨询“我的年假还有几天”、“我的上个月工资单”等动态问题。
这就要求 AI 员工助手对接HR等软件系统,并且做好相应的数据权限管理。比如:不能允许普通员工查询高管的薪酬数据。
另外,目前 AI 员工助手的商业化还存在一个难题,那就是产品高度同质化,缺乏竞争壁垒。
我认为,AI 员工助手更适合作为现有软件的增值功能打包售卖,单独售卖可能很难盈利。
4、HR Agent
AI 对 HR 软件的影响将是颠覆式的。
我觉得最核心的一点在于:相对于其他业务领域,HR的工作更强调“与人沟通”,而大模型最擅长的恰恰也是“与人沟通”。
目前 AI 在面试、培训这两个 HR 细分领域,都已经实现了对传统 HR 软件的彻底颠覆。
比如,在很多企业,从简历筛选、面试邀约到视频面试、面试评价等全流程,都已经实现了“去人化”,完全由 AI 来完成。
再比如,通过 AI 陪练,企业培训不再是纯理论的“视频学习”,而是由 AI 扮演客户、下属等角色,陪同员工、管理者进行实战训练。
当然了,AI 面试、AI 陪练也存在短板。
比如,面对高级人才的招募,面试过程高度个性化,并且强调创新、战略等软性思维。
但是 AI 面试更多还是相对固定的面试题目和评价标准,对软性思维的判断能力有限。
因此,AI 面试目前更多还是运用于蓝领招聘、校招等相对标准化、容错率高的面试场景。
5、AI 运营
运营工作往往非常繁琐,甚至高度重复。比如,跨境电商运营就需要频繁生成亚马逊平台的产品帖子,包括图片和文案等。
借助大模型强大的生成能力,内容生成的工作都可以交给 AI,大大提升了运营的工作效率。
不过,运营工作往往涉及多个步骤,但并非所有步骤都适合由 AI 来完成。比如,产品帖子的内容生成后,还需要按照一定频率在亚马逊平台发布。
而“在亚马逊平台发布帖子”这个任务,显然不太适合大模型。
因此,AI 还必须结合 RPA等软件,从而实现“端到端”的业务支撑。
6、AI 营销
实际上,前面 5 个业务场景都有一个共同特点:高容错。
比如,AI 编程的场景下,程序员往往会对编程结果进行检查确认,然后才能生效。
营销业务也存在很多高容错的场景,非常适合 AI 落地。
比如:
在拜访客户前,AI 可以给销售人员推荐同行业的成功案例,帮助销售人员做好准备工作;
在拜访客户后,AI 可以根据录音总结拜访记录,可以大大减轻销售人员的负担。
另外,AI 还可以进行商机分析,帮助销售人员做出正确的决策。
在这些场景下,AI都能够帮助提高线索转化率,并最终带来销售收入,因此企业的付费意愿也较为强烈。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。