二分的边界是一个让人十分蛋疼的问题
题目
解题思路一:
两次逼近
左逼近:即找到<=x的最后一个数。
当a[mid]<x时,令l=mid+1,mid及其左面的位置被排除了,最可能出现解的位置是mid+1及其后面的位置。
当a[mid]>=x时,说明mid及其左面极可能是含有值为x的元素
查找结束后,l与r相遇,l所在的元素若是x则一定是x出现的对小位置。
右逼近:
l 的初始值选择左逼近后查找元素的第一个解。
当a[mid]<=x时,待查找元素只会在mid本身和右面,所以l=mid;
当a[mid]>x时,待查找元素只会在mid左面,令r=mid;
此处不令r=mid-1的原因:如过按照上一个二分的写法,循环判断条件还是l<r,有 l 指向第二个解,r指向第三个解,mid指向第二个解,l=mid陷入死循环
代码模板一
#include <iostream>
using namespace std;
const int maxn = 100005;
int n, q, x, a[maxn];
int main() {
scanf("%d%d", &n, &q);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
while (q--) {
scanf("%d", &x);
int l = 0, r = n - 1;
while (l < r) {
int mid = l + r >> 1;
if (a[mid] < x) l = mid + 1;
else r = mid;
}
if (a[l] != x) {
printf("-1 -1\n");
continue;
}
int l1 = l, r1 = n;
while (l1 + 1 < r1) {
int mid = l1 + r1 >> 1;
if (a[mid] <= x) l1 = mid;
else r1 = mid;
}
printf("%d %d\n", l, l1);
}
return 0;
}
解题思路二
Y总的解题思路,利用模板
左逼近与上面一至
右逼近:
下取整+1,上取整-1;
代码模板二
#include <algorithm>
#include <iostream>
using namespace std;
const int N = 1e5 + 10;
int q[N];
int SL(int l, int r, int x) {
while (l < r) {
int mid = l + r >> 1;
if (q[mid] >= x) r = mid;
else l = mid + 1 ;
}
return l;
}
int SR (int l, int r, int x) {
while (l < r) {
int mid = l + r + 1 >> 1;
if(q[mid] <= x) l = mid;
else r = mid - 1;
}
return r;
}
int main() { int n,m;
scanf ("%d%d",&n,&m);
for(int i=0;i<n;++i) scanf ("%d",&q[i]);
while ( m-- ) {
int x;
scanf ("%d",&x);
int l = SL(0, n - 1, x);//查找左边界 并返回下标l
if (q[l]!=x) cout <<"-1 -1"<<endl;//如果找不到 返回-1 -1
else {
cout << l << ' '; //如果找到了 输出左下标
cout << SR(0, n - 1, x) << endl; //输出右下标
}
}
return 0;
}