第二章 随机变量及其分布(概率论)

本文详细介绍了随机变量及其分布的概念,包括随机变量的定义、分布函数的构造及其性质,重点剖析了离散型随机变量的分布律、常见分布如几何、超几何、二项及泊松分布,以及连续型随机变量的密度函数、均匀分布与指数分布。还讲解了随机变量函数Y=g(X)的分布计算方法。
摘要由CSDN通过智能技术生成

第二章 随机变量及其分布

将可计算随机变量落入任意区域的概率
P { X ∈ G } = { ∑ x k ∈ G p k 离 散 型 ∫ G f ( t )    d t 连 续 型 P\{X\in G \}=\begin{cases}\sum\limits_{x_k\in G}p_k\qquad 离散型 \\ \int\limits_G f(t)\;dt\qquad 连续型 \end{cases} P{XG}=xkGpkGf(t)dt

2.1 随机变量及其分布函数

引入:许多试验的结果本身不是实数,考虑将样本空间投影到实数轴上

  • 随机变量

    • 定义:对于试验样本空间 Ω \Omega Ω 中的每一个样本点 w w w,规定一个实数 X ( w ) X(w) X(w),定义一个定义域为 Ω \Omega Ω实值函数 X = X ( w ) \color{red}X=X(w) X=X(w),称 X X X 为随机变量。
    • 联系
      • P ( A ) P(A) P(A) 是概率, A ∈ ℘ A\in \wp A,值域为 [ 0 , 1 ] [0,1] [0,1]
      • X ( w ) X(w) X(w) 是随机变量, w ∈ Ω w\in \Omega wΩ,值域为 R R R,简写为 r . v . X r.v.X r.v.X (random variable)
    • 本质:随机函数是样本空间到实数域的映射
  • 分布函数

    • 定义:设 X X X是随机变量,对任意实数 x x x,定义 F ( x ) = P ( X ≤ x ) x ∈ R \color{red}F(x)=P(X\le x)\quad x\in R F(x)=P(Xx)xR,称 F ( x ) F(x) F(x) 为随机变量 X X X 的分布函数。
      ∀ x ∈ R , F ( X ) = d e f P ( X ∈ ( − ∞ , x ] ) = P ( X ≤ x ) \color{red}\forall x\in R,\quad F(X)\overset{def}{=}P(X\in(-\infty,x])=P(X\le x) xR,F(X)=defP(X(,x])=P(Xx)

    • 注意:分布函数是一个 概率,刻画了随机变量 X X X统计规律性

      对于任意实数 a , b ( a < b ) a,b(a<b) a,b(a<b)
      P ( a < X ≤ b ) = F ( b ) − F ( a ) P ( X = a ) = F ( a ) − lim ⁡ x → a − F ( x ) P(a<X\le b)=F(b)-F(a)\\ P(X=a)=F(a)-\lim\limits_{x\rightarrow a^-}F(x) P(a<Xb)=F(b)F(a)P(X=a)=F(a)xalimF(x)

    • S t a r \color{red}Star Star 性质:设 F ( x ) F(x) F(x) 为随机变量 X X X 的分布函数

      ⨀ \color{red}\bigodot 1. F ( x ) F(x) F(x) 单调不减
      ⨀ \color{red}\bigodot 2. 0 ≤ F ( x ) ≤ 1 0\le F(x)\le 1 0F(x)1 { F ( − ∞ ) = P ( X ≤ − ∞ ) = lim ⁡ x → − ∞ F ( x ) = 0 F ( + ∞ ) = P ( X ≤ + ∞ ) = lim ⁡ x → + ∞ F ( x ) = 1 \begin{cases}F(-\infty)=P(X\le-\infty)=\lim\limits_{x\rightarrow -\infty}F(x)=0\\F(+\infty)=P(X\le+\infty)=\lim\limits_{x\rightarrow +\infty}F(x)=1 \end{cases} F()=P(X)=xlimF(x)=0F(+)=P(X+)=x+limF(x)=1
      ⨀ \color{red}\bigodot 3. F ( x ) F(x) F(x)右连续(左闭右开) 的,对任意实数 x 0 x_0 x0,有 F ( x 0 ) = F ( x 0 + 0 ) \color{red}F(x_0)=F(x_0+0) F(x0)=F(x0+0)
      ⨀ \color{red}\bigodot 4. 对任意实数 x 0 x_0 x0,有 F ( X = x 0 ) = F ( x 0 ) − F ( x 0 − 0 ) F(X=x_0)=F(x_0)-F(x_0-0) F(X=x0)=F(x0)F(x00)

2.2 离散型随机变量及其分布

离散型随机变量的分布函数分布律刻画,分布律( n n n个)与分布函数( n + 1 n+1 n+1个)一一对应

2.2.1 离散型随机变量的概率分布

  • 离散型随机变量:随机变量 X X X 的所有可能取值和间断点的个数都是为有限个或可数无穷个

  • 概率分布

    • 定义:离散型随机变量 X X X 的取值为 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn,则称各值的概率 p k = P { X = x k } , k = 1 , 2 , . . . \color{red}p_k=P\{X=x_k\},\quad k=1,2,... pk=P{X=xk},k=1,2,... 为离散型随机变量 X X X分布律概率分布

    • 表示

      • 分布律

        X X X x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3
        P P P0.10.60.3
      • 分布函数
        F ( x ) = P ( X ≤ x ) = { 0 x < x 1 0.1 x 1 ≤ x < x 2 0.7 x 2 ≤ x < x 3 1 x 3 ≤ x F(x)=P(X\le x)= \begin{cases}\begin{aligned}0&\quad x<x_1\\ 0.1&\quad x_1\le x<x_2\\ 0.7&\quad x_2\le x<x_3\\ 1&\quad x_3\le x\end{aligned}\end{cases} F(x)=P(Xx)=00.10.71x<x1x1x<x2x2x<x3x3x

    • 性质

      1. 非负性: p k ≥ 0 , k = 1 , 2 , . . . p_k\ge 0,k=1,2,... pk0,k=1,2,...
      2. 和为一: ∑ k = 1 ∞ p k = 1 \sum\limits_{k=1}^\infty p_k=1 k=1pk=1
      3. P { a < X ≤ b } = ∑ a < x k ≤ b p k P\{a<X\le b\}=\sum\limits_{a<x_k\le b}p_k P{a<Xb}=a<xkbpk
    • 离散型随机变量的概率分布分布函数是相互确定的:

      • F ( x ) = ∑ x k ≤ x p k F(x)=\sum\limits_{x_k\le x}p_k F(x)=xkxpk
      • p k = P ( X = x k ) p_k=P(X=x_k) pk=P(X=xk) F ( x ) F(x) F(x) x k x_k xk 处的跃度

2.2.2 常见离散型分布

  • 几何分布 (Geometric)

    • 解释:可列伯努利实验( n n n 重伯努利试验一直重复下去, n → ∞ n\rightarrow \infty n)中,**首次“成功”**的概率。
    • 成功出现在第 k k k 次: p k = p ( X = k ) = p q k − 1 , k = 1 , 2 , . . . \color{red}p_k=p(X=k)=pq^{k-1},\qquad k=1,2,... pk=p(X=k)=pqk1,k=1,2,...
    • 表示 X ∼ G ( p ) \color{blue}X\sim G(p) XG(p)
  • 超几何分布 (Hypergeometric)

    • 解释:古典概型中,N个球的不放回摸球试验,其中有m个红球,取n个,取到红球的个数的概率。

    • 取球 k k k 次: p k = p ( X = k ) = C m k C N − m n − k C N n k = 0 , 1 , . . . n \color{red}p_k=p(X=k)=\dfrac{C_m^kC_{N-m}^{n-k}}{C_N^n}\qquad k=0,1,...n pk=p(X=k)=CNnCmkCNmnkk=0,1,...n

    • 表示 X ∼ H ( n , m , N ) \color{blue}X\sim H(n,m,N) XH(n,m,N)

  • 二项分布 (Binomial)

    • 解释 n n n 重伯努利试验中“成功”的次数

    • 成功 k k k 次: p k = p ( X = k ) = C n k p k q n − k k = 0 , 1 , . . . n \color{red}p_k=p(X=k)=C_n^kp^kq^{n-k}\qquad k=0,1,...n pk=p(X=k)=Cnkpkqnkk=0,1,...n

    • 表示 X ∼ B ( n , p ) \color{blue}X\sim B(n,p) XB(n,p)

      n = 1 n=1 n=1 时, B ( 1 , p ) B(1,p) B(1,p)0-1分布,即 X ∼ ( 0 1 q p ) X\sim\left(\begin{matrix}0&1\\q&p \end{matrix} \right) X(0q1p)

  • 泊松分布 (Poisson)

    • 解释:二项分布中 n n n 很大( n ≥ 50 n\ge50 n50)时,满足 λ = n p , 0 < p < 1 {\color{red}{\lambda=np}},0<p<1 λ=np,0<p<1

    • 二项分布的极限分布: p ( X = k ) = λ k k ! e − λ k = 0 , 1 , . . . \color{red}p(X=k)=\dfrac{\lambda^k}{k!}e^{-\lambda} \qquad k=0,1,... p(X=k)=k!λkeλk=0,1,...

      证明
      lim ⁡ n → ∞ P ( X = k ) = lim ⁡ n → ∞ C n k p k ( 1 − p ) n − k = lim ⁡ n → ∞ 1 k ! ⋅ n ( n − 1 ) . . . ( n − k + 1 ) ⋅ ( λ n ) k ⋅ ( 1 − λ n ) n − k = lim ⁡ n → ∞ λ k k ! ⋅ n ( n − 1 ) . . . ( n − k + 1 ) n k ⋅ ( 1 − λ n ) n ⋅ ( 1 − λ n ) − k = lim ⁡ n → ∞ λ k k ! ⋅ 1 ⋅ ( 1 − λ n ) n λ ⋅ λ ⋅ 1 = λ k k ! e − λ \begin{aligned} \lim\limits_{n\rightarrow\infty}P(X=k) &=\lim\limits_{n\rightarrow\infty} C_n^kp^k(1-p)^{n-k}\\ &=\lim\limits_{n\rightarrow\infty}\dfrac{1}{k!}\cdot n(n-1)...(n-k+1)\cdot\left(\dfrac{\lambda}{n} \right)^k\cdot\left(1-\dfrac{\lambda}{n} \right)^{n-k}\\ &= \lim\limits_{n\rightarrow\infty}\dfrac{\lambda^k}{k!}\cdot\dfrac{n(n-1)...(n-k+1)}{n^k}\cdot \left(1-\dfrac{\lambda}{n} \right)^n\cdot \left(1-\dfrac{\lambda}{n} \right)^{-k}\\ &= \lim\limits_{n\rightarrow\infty}\dfrac{\lambda^k}{k!}\cdot1\cdot \left(1-\dfrac{\lambda}{n} \right)^{{n\over\lambda}\cdot\lambda}\cdot 1\\ &= \dfrac{\lambda^k}{k!}e^{-\lambda} \end{aligned} nlimP(X=k)=nlimCnkpk(1p)nk=nlimk!1n(n1)...(nk+1)(nλ)k(1nλ)nk=nlimk!λknkn(n1)...(nk+1)(1nλ)n(1nλ)k=nlimk!λk1(1nλ)λnλ1=k!λkeλ

    • 表示 X ∼ P ( λ ) \color{blue}X\sim P(\lambda) XP(λ)

    • 例题 \color{White}\colorbox{Fuchsia}{例题} :某网吧有 300 300 300台电脑,每台电脑的上网人因各种原因需要网管帮助的概率为 0.01 0.01 0.01,现在有两种方式配备网管:

      A A A:配备 10 10 10名网管,每人负责 30 30 30台电脑; B B B:配备 8 8 8名网管,共同负责 300 300 300台电脑。

      1. 证明:方式 B B B比方式 A A A效果好

        解:
        设 p 1 , p 2 分 别 为 A , B 方 式 下 有 人 得 不 到 帮 助 的 概 率 . A 方 式 下 , X 1 ∼ B ( 30 , 0.01 ) : p 1 = 1 − ( P ( X = 0 ) + P ( X = 1 ) ) 10 = 1 − ( C 30 0 ⋅ 0.0 1 0 ⋅ 0.9 9 30 + C 30 1 ⋅ 0.0 1 1 ⋅ 0.9 9 29 ) 10 = 0.3077 B 方 式 下 , X 2 ∼ B ( 300 , 0.01 ) , X 2 ∼ P ( 3 ) : p 2 = P ( X 2 > 8 ) = P ( X 2 ≥ 9 ) = 0.0038 ∴ p 2 < p 1 设p_1,p_2分别为A,B方式下有人得不到帮助的概率.\\ \begin{aligned} &A方式下,X_1\sim B(30,0.01):\\ &\qquad p_1=1-(P(X=0)+P(X=1))^{10}=1-(C_{30}^0\cdot0.01^0\cdot0.99^{30}+C_{30}^1\cdot0.01^1\cdot0.99^{29})^{10}=0.3077\\ &B方式下,X_2\sim B(300,0.01),X_2\sim P(3):\\ &\qquad p_2=P(X_2>8)=P(X_2\ge 9)=0.0038 \end{aligned}\\ \therefore p_2<p1 p1,p2A,B.AX1B(30,0.01):p1=1(P(X=0)+P(X=1))10=1(C3000.0100.9930+C3010.0110.9929)10=0.3077BX2B(300,0.01),X2P(3):p2=P(X2>8)=P(X29)=0.0038p2<p1

      2. 若只需要方式 B B B下有上网人得不到及时帮助的概率小于 0.02 0.02 0.02,则 8 8 8名网管可减少至几名?

        解:
        查 表 得 , 使 P ( X 2 > n ) = P ( X 2 ≥ n + 1 ) < 0.02 时 的 最 小 的 n 为 n = 7 查表得,使P(X_2>n)=P(X_2\ge n+1)<0.02时的最小的n为 n=7 使P(X2>n)=P(X2n+1)<0.02nn=7

2.3 连续型随机变量及其分布

连续型随机变量的分布函数,在 x 0 x_0 x0左极限与右极限相等

2.3.1 连续型随机变量的概率分布

  • 密度函数 Density Function:看作标准化后的直方图 Histogram

    • 定义:对于分布函数 F ( x ) F(x) F(x),若存在非负函数 f ( x ) f(x) f(x) 使得 F ( x ) = P ( X ∈ ( − ∞ , x ] ) = ∫ − ∞ x f ( t ) d t x ∈ R \color{red}F(x)=P(X\in\left(-\infty,x\right] ) =\int_{-\infty}^xf(t)dt\quad x\in R F(x)=P(X(,x])=xf(t)dtxR,则称 X X X连续型随机变量 f ( x ) f(x) f(x) X X X概率密度函数,记为 X ∼ f ( x ) X\sim f(x) Xf(x)
      在这里插入图片描述

    • 意义:密度函数不表示概率

      1. 密度函数表示某点附近 概率的疏密程度
      2. 密度函数 下方面积 表示概率。
    • 性质

      1. f ( x ) ≥ 0 , x ∈ ( − ∞ , + ∞ ) f(x)\ge 0,\quad x\in(-\infty,+\infty) f(x)0,x(,+)
      2. S t a r : ∫ − ∞ + ∞ f ( x )    d x = 1 {\color{red}Star:} \int_{-\infty}^{+\infty}f(x)\;dx=1 Star:+f(x)dx=1
    • 结论

      1. 区间概率:对 ∀ a < b , P ( a < X ≤ b ) = ∫ a b f ( x )    d x \forall a<b,\quad \color{red}P(a<X\le b)=\int_a^bf(x)\;dx a<b,P(a<Xb)=abf(x)dx
      2. f ( x ) f(x) f(x) 的连续点处,有 F ′ ( x ) = f ( x ) \color{red}F'(x)=f(x) F(x)=f(x);且 F ( x ) F(x) F(x)是连续函数
      3. ∀ C , P ( X = C ) = ∫ C C f ( x )    d x = 0 \forall C,\quad P(X=C)=\int_C^C f(x)\;dx=0 C,P(X=C)=CCf(x)dx=0
    • 注意:对密度函数积分计算概率时,大部分是对分段函数的积分。

    • 例题 \color{White}\colorbox{Fuchsia}{例题} :设 X X X 的概率密度 f ( x ) = { a x 3 , x > 1 x , 0 ≤ x ≤ 1 0 , o t h e r s f(x)=\begin{cases}\dfrac{a}{x^3},x>1\\x,0\le x\le1 \\0,others \end{cases} f(x)=x3a,x>1x,0x10,others

      1. a a a
        1 = ∫ − ∞ + ∞ f ( x )    d x = ∫ 0 1 x d x + ∫ 1 + ∞ a x 3 = 1 + a 2 ∴ a = 1 1=\int_{-\infty}^{+\infty}f(x)\;dx=\int_0^1xdx+\int_1^{+\infty}\dfrac{a}{x^3}=\dfrac{1+a}{2}\\ \therefore a=1 1=+f(x)dx=01xdx+1+x3a=21+aa=1

      2. F ( x ) F(x) F(x)
        当 x ≤ 0 时 , F ( x ) = 0 当 0 < x ≤ 1 时 , F ( x ) = ∫ 0 x x    d x = x 2 2 当 1 < x 时 , F ( x ) = 0 + 1 2 + ∫ 1 x 1 x 3    d x = 1 − 1 2 x 2 \begin{aligned} &当x\le0时,F(x)=0\\ &当0< x\le1时,F(x)=\int_0^x x\;dx=\dfrac{x^2}{2}\\ &当1< x时,F(x)=0+\dfrac{1}{2}+\int_1^x \dfrac{1}{x^3}\;dx=1-\dfrac{1}{2x^2} \end{aligned} x0F(x)=00<x1F(x)=0xxdx=2x21<xF(x)=0+21+1xx31dx=12x21

      3. P ( X > 0.5 ) P(X>0.5) P(X>0.5).
        P ( X > 0.5 ) = 1 − F ( 0.5 ) = 1 − 1 8 = 7 8 P(X>0.5)=1-F(0.5)=1-\dfrac{1}{8}=\dfrac{7}{8} P(X>0.5)=1F(0.5)=181=87

2.3.2 常见连续型分布

  • 均匀分布 Uniform Distribution:密度函数是常数

    • 定义:密度函数 f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , o t h e r s \color{red} f(x)=\begin{cases}\begin{aligned}&\dfrac{1}{b-a},&a\le x\le b\\&0,&others \end{aligned} \end{cases} f(x)=ba1,0,axbothers
    • 记为 X ∼ U ( a , b ) \color{blue}X\sim U(a,b) XU(a,b)
    • 分布函数 F ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , b < x F(x)=\begin{cases}\begin{aligned}&0,&x<a\\&\dfrac{x-a}{b-a},&a\le x\le b\\&1,&b<x \end{aligned}\end{cases} F(x)=0,baxa,1,x<aaxbb<x
  • 指数分布 Exponential Distribution:密度函数是指数 λ > 0 \lambda>0 λ>0

    • 定义:密度函数 f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 \color{red} f(x)=\begin{cases}\begin{aligned}&\lambda e^{-\lambda x},&x>0 \\&0,&x\le 0\end{aligned} \end{cases} f(x)={λeλx,0,x>0x0
    • 记为 X ∼ e ( λ ) \color{blue}X\sim e(\lambda) Xe(λ)
    • 分布函数 F ( x ) = { 1 − e − λ x , x > 0 0 , x ≤ 0 F(x)=\begin{cases}\begin{aligned}&1-e^{-\lambda x},&x>0 \\ &0,&x\le 0\end{aligned}\end{cases} F(x)={1eλx,0,x>0x0
    • 由于指数非负,指数分布常用于描述寿命
    • 无记忆性 P ( X ≥ s + t ∣ X ≥ s ) = P ( X ≥ t ) P(X\ge s+t|X\ge s)=P(X\ge t) P(Xs+tXs)=P(Xt) s s s 无关,只与 t t t 有关。
  • Γ \Gamma Γ 分布 Gamma Distribution:密度函数是指数 λ > 0 \lambda>0 λ>0

    • Γ \Gamma Γ 函数 α > 0 \alpha>0 α>0

      • 定义 Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x    d x \color{red}\Gamma(\alpha)=\int_0^{+\infty}x^{\alpha-1}e^{-x}\;dx Γ(α)=0+xα1exdx

      • 性质

        1. Γ ( α + 1 ) = α Γ ( α ) , α > 0 \Gamma(\alpha+1)=\alpha \Gamma(\alpha),\alpha>0 Γ(α+1)=αΓ(α),α>0
        2. Γ ( 2 ) = Γ ( 1 ) = 1 , Γ ( 1 2 ) = π \Gamma(2)=\Gamma(1)=1,\Gamma(\dfrac{1}{2})=\sqrt{\pi} Γ(2)=Γ(1)=1,Γ(21)=π
        3. x ∈ N ∗ x\in N^* xN Γ ( n ) = ( n − 1 ) ! \Gamma(n)=(n-1)! Γ(n)=(n1)!
      • 例题 \color{White}\colorbox{Fuchsia}{例题} :计算

        1. ∫ 0 + ∞ x 2 e − 3 x    d x \int_0^{+\infty}x^2e^{-3x}\;dx 0+x2e3xdx
          换 元 : 令 y = 3 x , 原 式 = 1 9 ∫ 0 + ∞ x 2 e − y    1 3 d y = 1 27 Γ ( 3 ) = 2 27 换元:令y=3x,原式=\dfrac{1}{9} \int_0^{+\infty}x^2e^{-y}\;\dfrac{1}{3} dy=\dfrac{1}{27}\Gamma(3)=\dfrac{2}{27} :y=3x,=910+x2ey31dy=271Γ(3)=272

        2. ∫ 0 + ∞ x 3 2 e − x    d x \int_0^{+\infty}x^{3\over2}e^{-x}\;dx 0+x23exdx
          原 式 = Γ ( 5 2 ) = 3 4 π . 原式=\Gamma(\dfrac{5}{2})=\dfrac{3}{4}\sqrt{\pi}. =Γ(25)=43π .

    • 定义:密度函数 f ( x ) = { β α Γ ( α ) x α − 1 e − β x , x > 0 0 , x ≤ 0 \color{red} f(x)=\begin{cases}\begin{aligned}&\dfrac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}, &x>0 \\&0,&x\le 0\end{aligned} \end{cases} f(x)=Γ(α)βαxα1eβx,0,x>0x0

    • 记为 X ∼ Γ ( α , β ) \color{blue}X\sim \Gamma(\alpha,\beta) XΓ(α,β)

      α = 1 \alpha=1 α=1 时, Γ ( 1 , β ) \Gamma(1,\beta) Γ(1,β) e ( β ) e(\beta) e(β).

    • 分布函数 F ( x ) = { 1 − e − λ x , x > 0 0 , x ≤ 0 F(x)=\begin{cases}\begin{aligned}&1-e^{-\lambda x},&x>0 \\ &0,&x\le 0\end{aligned}\end{cases} F(x)={1eλx,0,x>0x0

2.4 随机变量函数 Y=g(X) 的分布

  • 离散型:若 Y = g ( X ) Y=g(X) Y=g(X),只需要计算对应 P ( Y ) = P ( g ( X ) ) P(Y)=P(g(X)) P(Y)=P(g(X)) 时的概率。

  • 连续型

    • 已知连续型 r . v X r.v X r.vX 有密度函数 f X ( x ) f_X(x) fX(x),求 Y Y Y 的密度函数 f Y ( y ) f_Y(y) fY(y)一般方法先求分布,再求密度

      ⨀ \color{red}\bigodot 1. 由 Y = g ( X ) Y=g(X) Y=g(X) 确定 Y Y Y 的值域 R ( Y ) R(Y) R(Y)

      ⨀ \color{red}\bigodot 2. 对任意 y ∈ R ( Y ) y\in R(Y) yR(Y),先求 Y Y Y 的分布函数
      F Y ( y ) = P ( Y ≤ y ) = P ( g ( X ) ≤ y ) = P ( X ∈ G ( y ) ) = ∫ G ( x ) ⋂ D ( x ) f X ( x )    d x \color{red}F_Y(y)=P(Y\le y)=P(g(X)\le y)=P(X\in G(y))=\int\limits_{G(x)\bigcap D(x)}f_X(x)\;dx FY(y)=P(Yy)=P(g(X)y)=P(XG(y))=G(x)D(x)fX(x)dx

      ⨀ \color{red}\bigodot 3. 再求密度 f Y ( y ) = { F Y ′ ( y ) , y ∈ R ( Y ) 0 , y ∉ R ( Y ) f_Y(y)=\begin{cases}\begin{aligned}&\color{red}F_Y'(y),&y\in R(Y)\\ &0,&y\notin R(Y) \end{aligned}\end{cases} fY(y)={FY(y),0,yR(Y)y/R(Y)

    • 例题 \color{White}\colorbox{Fuchsia}{例题} :设随机变量 X X X 的密度函数为 f ( x ) = { 1 4 ∣ x ∣ − 2 ≤ x ≤ 0 x , 0 ≤ x ≤ 1 0 , o t h e r s f(x)=\begin{cases}\begin{aligned}&\dfrac{1}{4}|x| &-2\le x\le0\\&x,&0\le x\le1 \\&0,&others\end{aligned} \end{cases} f(x)=41xx,0,2x00x1others Y = X 2 Y=X^2 Y=X2,求 Y Y Y 的密度函数。

      解:
      易 得 R ( Y ) = [ 0 , 4 ] ; 对 于 ∀ y ∈ [ 0 , 4 ] , 有 F Y ( y ) = P ( X 2 ≤ y ) = P ( − y ≤ X ≤ y ) . 当 y ∈ [ 0 , 1 ] 时 , F Y ( y ) = ∫ − y y f X ( x )    d x = ∫ − y 0 1 4 ( − x )    d x + ∫ 0 y x    d x = 5 8 y ; 当 y ∈ ( 1 , 4 ] 时 , F Y ( y ) = ∫ − y y f X ( x )    d x = ∫ − y 1 f X ( x )    d x = ∫ − y 0 1 4 ( − x )    d x + ∫ 0 1 x    d x = y 8 + 1 2 ; 当 y ∈ ( 4 , + ∞ ) 时 , F Y ( y ) = 1 ; 当 y ∈ ( − ∞ , 1 ) 时 , F Y ( y ) = 0. 从 而 f Y ( x ) = F Y ′ ( x ) = { 5 8 , 0 ≤ y ≤ 1 1 8 , 1 < y ≤ 4 0 , o t h e r s \begin{aligned}&易得R(Y)=[0,4];&&对于\forall y\in[0,4], 有F_Y(y)=P(X^2\le y)=P(-\sqrt{y}\le X\le\sqrt{y}).\\ &当y\in[0,1]时, &&F_Y(y)=\int_{-\sqrt{y}}^{\sqrt{y}}f_X(x)\;dx=\int_{-\sqrt{y}}^0 \dfrac{1}{4}(-x) \;dx+\int_0^{\sqrt{y}} x\;dx=\dfrac{5}{8}y ;\\ &当y\in(1,4]时, &&F_Y(y)=\int_{-\sqrt{y}}^{\sqrt{y}}f_X(x)\;dx=\int_{-\sqrt{y}}^{\color{red}1} f_X(x) \;dx =\int_{-\sqrt{y}}^0 \dfrac{1}{4}(-x) \;dx+\int_0^1 x\;dx=\dfrac{y}{8}+\dfrac{1}{2} ;\\ &当y\in(4,+\infty)时, &&F_Y(y)= 1;\\ &当y\in(-\infty,1)时, &&F_Y(y)= 0.\\ \end{aligned}\\ 从而f_Y(x)=F_Y'(x) =\begin{cases}\dfrac{5}{8},0\le y\le1 \\ \dfrac{1}{8},1<y\le 4\\0,others \end{cases} R(Y)=[0,4];y[0,1],y(1,4],y(4,+),y(,1),y[0,4],FY(y)=P(X2y)=P(y Xy ).FY(y)=y y fX(x)dx=y 041(x)dx+0y xdx=85y;FY(y)=y y fX(x)dx=y 1fX(x)dx=y 041(x)dx+01xdx=8y+21;FY(y)=1;FY(y)=0.fY(x)=FY(x)=85,0y181,1<y40,others

    • 例题 \color{White}\colorbox{Fuchsia}{例题} X X X 有连续且严格增加的分布函数 F ( x ) F(x) F(x) Y = − 2 ln ⁡ F ( X ) Y=-2\ln{F(X)} Y=2lnF(X),求 Y Y Y 的密度函数 f Y ( y ) f_Y(y) fY(y).

      解:
      易 得 R ( Y ) = [ 0 , + ∞ ) ; 对 于 ∀ y ∈ [ 0 , + ∞ ) , 有 F Y ( y ) = P ( − 2 ln ⁡ F ( X ) ≤ y ) = P ( F ( X ) ≥ e − y 2 ) = P ( X ≥ F − 1 ( e − y 2 ) ) = 1 − F ( F − 1 ( e − y 2 ) ) = 1 − e − y 2 ; 当 y ≤ 0 , 显 然 F Y ( y ) = 0. 从 而 f Y ( x ) = F Y ′ ( x ) = { 1 2 e − y 2 , y > 1 0 , y ≤ 0 易得R(Y)=[0,+\infty);\\ \begin{aligned} 对于\forall y\in[0,+\infty), 有F_Y(y)&=P(-2\ln{F(X)}\le y)\\ &=P(F(X)\ge e^{-{y\over2}})\\ &=P(X\ge F^{-1}(e^{-{y\over2}}))\\ &=1-F(F^{-1}(e^{-{y\over2}}))\\ &=1-e^{-{y\over2}}; \end{aligned}\\ 当y\le0,显然F_Y(y)=0. \\ 从而f_Y(x)=F_Y'(x) =\begin{cases}\dfrac{1}{2}e^{-{y\over2}},y>1 \\ 0,y\le 0 \end{cases} R(Y)=[0,+);y[0,+),FY(y)=P(2lnF(X)y)=P(F(X)e2y)=P(XF1(e2y))=1F(F1(e2y))=1e2y;y0,FY(y)=0.fY(x)=FY(x)=21e2y,y>10,y0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值