文章目录
第二章 随机变量及其分布
将可计算随机变量落入任意区域的概率:
P
{
X
∈
G
}
=
{
∑
x
k
∈
G
p
k
离
散
型
∫
G
f
(
t
)
d
t
连
续
型
P\{X\in G \}=\begin{cases}\sum\limits_{x_k\in G}p_k\qquad 离散型 \\ \int\limits_G f(t)\;dt\qquad 连续型 \end{cases}
P{X∈G}=⎩⎪⎨⎪⎧xk∈G∑pk离散型G∫f(t)dt连续型
2.1 随机变量及其分布函数
引入:许多试验的结果本身不是实数,考虑将样本空间投影到实数轴上
-
随机变量:
- 定义:对于试验样本空间 Ω \Omega Ω 中的每一个样本点 w w w,规定一个实数 X ( w ) X(w) X(w),定义一个定义域为 Ω \Omega Ω 的实值函数 X = X ( w ) \color{red}X=X(w) X=X(w),称 X X X 为随机变量。
- 联系:
- P ( A ) P(A) P(A) 是概率, A ∈ ℘ A\in \wp A∈℘,值域为 [ 0 , 1 ] [0,1] [0,1]
- X ( w ) X(w) X(w) 是随机变量, w ∈ Ω w\in \Omega w∈Ω,值域为 R R R,简写为 r . v . X r.v.X r.v.X (random variable)
- 本质:随机函数是样本空间到实数域的映射
-
分布函数:
-
定义:设 X X X是随机变量,对任意实数 x x x,定义 F ( x ) = P ( X ≤ x ) x ∈ R \color{red}F(x)=P(X\le x)\quad x\in R F(x)=P(X≤x)x∈R,称 F ( x ) F(x) F(x) 为随机变量 X X X 的分布函数。
∀ x ∈ R , F ( X ) = d e f P ( X ∈ ( − ∞ , x ] ) = P ( X ≤ x ) \color{red}\forall x\in R,\quad F(X)\overset{def}{=}P(X\in(-\infty,x])=P(X\le x) ∀x∈R,F(X)=defP(X∈(−∞,x])=P(X≤x) -
注意:分布函数是一个 概率,刻画了随机变量 X X X的 统计规律性。
对于任意实数 a , b ( a < b ) a,b(a<b) a,b(a<b)
P ( a < X ≤ b ) = F ( b ) − F ( a ) P ( X = a ) = F ( a ) − lim x → a − F ( x ) P(a<X\le b)=F(b)-F(a)\\ P(X=a)=F(a)-\lim\limits_{x\rightarrow a^-}F(x) P(a<X≤b)=F(b)−F(a)P(X=a)=F(a)−x→a−limF(x) -
S t a r \color{red}Star Star 性质:设 F ( x ) F(x) F(x) 为随机变量 X X X 的分布函数
⨀ \color{red}\bigodot ⨀ 1. F ( x ) F(x) F(x) 单调不减
⨀ \color{red}\bigodot ⨀ 2. 0 ≤ F ( x ) ≤ 1 0\le F(x)\le 1 0≤F(x)≤1 且 { F ( − ∞ ) = P ( X ≤ − ∞ ) = lim x → − ∞ F ( x ) = 0 F ( + ∞ ) = P ( X ≤ + ∞ ) = lim x → + ∞ F ( x ) = 1 \begin{cases}F(-\infty)=P(X\le-\infty)=\lim\limits_{x\rightarrow -\infty}F(x)=0\\F(+\infty)=P(X\le+\infty)=\lim\limits_{x\rightarrow +\infty}F(x)=1 \end{cases} ⎩⎨⎧F(−∞)=P(X≤−∞)=x→−∞limF(x)=0F(+∞)=P(X≤+∞)=x→+∞limF(x)=1
⨀ \color{red}\bigodot ⨀ 3. F ( x ) F(x) F(x) 是 右连续(左闭右开) 的,对任意实数 x 0 x_0 x0,有 F ( x 0 ) = F ( x 0 + 0 ) \color{red}F(x_0)=F(x_0+0) F(x0)=F(x0+0)
⨀ \color{red}\bigodot ⨀ 4. 对任意实数 x 0 x_0 x0,有 F ( X = x 0 ) = F ( x 0 ) − F ( x 0 − 0 ) F(X=x_0)=F(x_0)-F(x_0-0) F(X=x0)=F(x0)−F(x0−0)
-
2.2 离散型随机变量及其分布
离散型随机变量的分布函数用分布律刻画,分布律( n n n个)与分布函数( n + 1 n+1 n+1个)一一对应
2.2.1 离散型随机变量的概率分布
-
离散型随机变量:随机变量 X X X 的所有可能取值和间断点的个数都是为有限个或可数无穷个。
-
概率分布:
-
定义:离散型随机变量 X X X 的取值为 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn,则称各值的概率 p k = P { X = x k } , k = 1 , 2 , . . . \color{red}p_k=P\{X=x_k\},\quad k=1,2,... pk=P{X=xk},k=1,2,... 为离散型随机变量 X X X 的分布律或概率分布。
-
表示:
-
分布律
X X X x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 P P P 0.1 0.6 0.3 -
分布函数
F ( x ) = P ( X ≤ x ) = { 0 x < x 1 0.1 x 1 ≤ x < x 2 0.7 x 2 ≤ x < x 3 1 x 3 ≤ x F(x)=P(X\le x)= \begin{cases}\begin{aligned}0&\quad x<x_1\\ 0.1&\quad x_1\le x<x_2\\ 0.7&\quad x_2\le x<x_3\\ 1&\quad x_3\le x\end{aligned}\end{cases} F(x)=P(X≤x)=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧00.10.71x<x1x1≤x<x2x2≤x<x3x3≤x
-
-
性质:
- 非负性: p k ≥ 0 , k = 1 , 2 , . . . p_k\ge 0,k=1,2,... pk≥0,k=1,2,...
- 和为一: ∑ k = 1 ∞ p k = 1 \sum\limits_{k=1}^\infty p_k=1 k=1∑∞pk=1
- P { a < X ≤ b } = ∑ a < x k ≤ b p k P\{a<X\le b\}=\sum\limits_{a<x_k\le b}p_k P{a<X≤b}=a<xk≤b∑pk
-
离散型随机变量的概率分布与分布函数是相互确定的:
- F ( x ) = ∑ x k ≤ x p k F(x)=\sum\limits_{x_k\le x}p_k F(x)=xk≤x∑pk
- p k = P ( X = x k ) p_k=P(X=x_k) pk=P(X=xk) 为 F ( x ) F(x) F(x) 在 x k x_k xk 处的跃度。
-
2.2.2 常见离散型分布
-
几何分布 (Geometric):
- 解释:可列伯努利实验( n n n 重伯努利试验一直重复下去, n → ∞ n\rightarrow \infty n→∞)中,**首次“成功”**的概率。
- 成功出现在第 k k k 次: p k = p ( X = k ) = p q k − 1 , k = 1 , 2 , . . . \color{red}p_k=p(X=k)=pq^{k-1},\qquad k=1,2,... pk=p(X=k)=pqk−1,k=1,2,...
- 表示: X ∼ G ( p ) \color{blue}X\sim G(p) X∼G(p)
-
超几何分布 (Hypergeometric):
-
解释:古典概型中,N个球的不放回摸球试验,其中有m个红球,取n个,取到红球的个数的概率。
-
取球 k k k 次: p k = p ( X = k ) = C m k C N − m n − k C N n k = 0 , 1 , . . . n \color{red}p_k=p(X=k)=\dfrac{C_m^kC_{N-m}^{n-k}}{C_N^n}\qquad k=0,1,...n pk=p(X=k)=CNnCmkCN−mn−kk=0,1,...n
-
表示: X ∼ H ( n , m , N ) \color{blue}X\sim H(n,m,N) X∼H(n,m,N)
-
-
二项分布 (Binomial):
-
解释: n n n 重伯努利试验中“成功”的次数
-
成功 k k k 次: p k = p ( X = k ) = C n k p k q n − k k = 0 , 1 , . . . n \color{red}p_k=p(X=k)=C_n^kp^kq^{n-k}\qquad k=0,1,...n pk=p(X=k)=Cnkpkqn−kk=0,1,...n
-
表示: X ∼ B ( n , p ) \color{blue}X\sim B(n,p) X∼B(n,p)
当 n = 1 n=1 n=1 时, B ( 1 , p ) B(1,p) B(1,p) 为 0-1分布,即 X ∼ ( 0 1 q p ) X\sim\left(\begin{matrix}0&1\\q&p \end{matrix} \right) X∼(0q1p)
-
-
泊松分布 (Poisson):
-
解释:二项分布中 n n n 很大( n ≥ 50 n\ge50 n≥50)时,满足 λ = n p , 0 < p < 1 {\color{red}{\lambda=np}},0<p<1 λ=np,0<p<1。
-
二项分布的极限分布: p ( X = k ) = λ k k ! e − λ k = 0 , 1 , . . . \color{red}p(X=k)=\dfrac{\lambda^k}{k!}e^{-\lambda} \qquad k=0,1,... p(X=k)=k!λke−λk=0,1,...
证明:
lim n → ∞ P ( X = k ) = lim n → ∞ C n k p k ( 1 − p ) n − k = lim n → ∞ 1 k ! ⋅ n ( n − 1 ) . . . ( n − k + 1 ) ⋅ ( λ n ) k ⋅ ( 1 − λ n ) n − k = lim n → ∞ λ k k ! ⋅ n ( n − 1 ) . . . ( n − k + 1 ) n k ⋅ ( 1 − λ n ) n ⋅ ( 1 − λ n ) − k = lim n → ∞ λ k k ! ⋅ 1 ⋅ ( 1 − λ n ) n λ ⋅ λ ⋅ 1 = λ k k ! e − λ \begin{aligned} \lim\limits_{n\rightarrow\infty}P(X=k) &=\lim\limits_{n\rightarrow\infty} C_n^kp^k(1-p)^{n-k}\\ &=\lim\limits_{n\rightarrow\infty}\dfrac{1}{k!}\cdot n(n-1)...(n-k+1)\cdot\left(\dfrac{\lambda}{n} \right)^k\cdot\left(1-\dfrac{\lambda}{n} \right)^{n-k}\\ &= \lim\limits_{n\rightarrow\infty}\dfrac{\lambda^k}{k!}\cdot\dfrac{n(n-1)...(n-k+1)}{n^k}\cdot \left(1-\dfrac{\lambda}{n} \right)^n\cdot \left(1-\dfrac{\lambda}{n} \right)^{-k}\\ &= \lim\limits_{n\rightarrow\infty}\dfrac{\lambda^k}{k!}\cdot1\cdot \left(1-\dfrac{\lambda}{n} \right)^{{n\over\lambda}\cdot\lambda}\cdot 1\\ &= \dfrac{\lambda^k}{k!}e^{-\lambda} \end{aligned} n→∞limP(X=k)=n→∞limCnkpk(1−p)n−k=n→∞limk!1⋅n(n−1)...(n−k+1)⋅(nλ)k⋅(1−nλ)n−k=n→∞limk!λk⋅nkn(n−1)...(n−k+1)⋅(1−nλ)n⋅(1−nλ)−k=n→∞limk!λk⋅1⋅(1−nλ)λn⋅λ⋅1=k!λke−λ -
表示: X ∼ P ( λ ) \color{blue}X\sim P(\lambda) X∼P(λ)
-
例题 \color{White}\colorbox{Fuchsia}{例题} 例题:某网吧有 300 300 300台电脑,每台电脑的上网人因各种原因需要网管帮助的概率为 0.01 0.01 0.01,现在有两种方式配备网管:
A A A:配备 10 10 10名网管,每人负责 30 30 30台电脑; B B B:配备 8 8 8名网管,共同负责 300 300 300台电脑。
-
证明:方式 B B B比方式 A A A效果好
解:
设 p 1 , p 2 分 别 为 A , B 方 式 下 有 人 得 不 到 帮 助 的 概 率 . A 方 式 下 , X 1 ∼ B ( 30 , 0.01 ) : p 1 = 1 − ( P ( X = 0 ) + P ( X = 1 ) ) 10 = 1 − ( C 30 0 ⋅ 0.0 1 0 ⋅ 0.9 9 30 + C 30 1 ⋅ 0.0 1 1 ⋅ 0.9 9 29 ) 10 = 0.3077 B 方 式 下 , X 2 ∼ B ( 300 , 0.01 ) , X 2 ∼ P ( 3 ) : p 2 = P ( X 2 > 8 ) = P ( X 2 ≥ 9 ) = 0.0038 ∴ p 2 < p 1 设p_1,p_2分别为A,B方式下有人得不到帮助的概率.\\ \begin{aligned} &A方式下,X_1\sim B(30,0.01):\\ &\qquad p_1=1-(P(X=0)+P(X=1))^{10}=1-(C_{30}^0\cdot0.01^0\cdot0.99^{30}+C_{30}^1\cdot0.01^1\cdot0.99^{29})^{10}=0.3077\\ &B方式下,X_2\sim B(300,0.01),X_2\sim P(3):\\ &\qquad p_2=P(X_2>8)=P(X_2\ge 9)=0.0038 \end{aligned}\\ \therefore p_2<p1 设p1,p2分别为A,B方式下有人得不到帮助的概率.A方式下,X1∼B(30,0.01):p1=1−(P(X=0)+P(X=1))10=1−(C300⋅0.010⋅0.9930+C301⋅0.011⋅0.9929)10=0.3077B方式下,X2∼B(300,0.01),X2∼P(3):p2=P(X2>8)=P(X2≥9)=0.0038∴p2<p1 -
若只需要方式 B B B下有上网人得不到及时帮助的概率小于 0.02 0.02 0.02,则 8 8 8名网管可减少至几名?
解:
查 表 得 , 使 P ( X 2 > n ) = P ( X 2 ≥ n + 1 ) < 0.02 时 的 最 小 的 n 为 n = 7 查表得,使P(X_2>n)=P(X_2\ge n+1)<0.02时的最小的n为 n=7 查表得,使P(X2>n)=P(X2≥n+1)<0.02时的最小的n为n=7
-
-
2.3 连续型随机变量及其分布
连续型随机变量的分布函数,在 x 0 x_0 x0处左极限与右极限相等
2.3.1 连续型随机变量的概率分布
-
密度函数 Density Function:看作标准化后的直方图 Histogram
-
定义:对于分布函数 F ( x ) F(x) F(x),若存在非负函数 f ( x ) f(x) f(x) 使得 F ( x ) = P ( X ∈ ( − ∞ , x ] ) = ∫ − ∞ x f ( t ) d t x ∈ R \color{red}F(x)=P(X\in\left(-\infty,x\right] ) =\int_{-\infty}^xf(t)dt\quad x\in R F(x)=P(X∈(−∞,x])=∫−∞xf(t)dtx∈R,则称 X X X 为 连续型随机变量, f ( x ) f(x) f(x) 为 X X X 的 概率密度函数,记为 X ∼ f ( x ) X\sim f(x) X∼f(x)。
-
意义:密度函数不表示概率
- 密度函数表示某点附近 概率的疏密程度。
- 密度函数 下方面积 表示概率。
-
性质:
- f ( x ) ≥ 0 , x ∈ ( − ∞ , + ∞ ) f(x)\ge 0,\quad x\in(-\infty,+\infty) f(x)≥0,x∈(−∞,+∞)
- S t a r : ∫ − ∞ + ∞ f ( x ) d x = 1 {\color{red}Star:} \int_{-\infty}^{+\infty}f(x)\;dx=1 Star:∫−∞+∞f(x)dx=1
-
结论:
- 区间概率:对 ∀ a < b , P ( a < X ≤ b ) = ∫ a b f ( x ) d x \forall a<b,\quad \color{red}P(a<X\le b)=\int_a^bf(x)\;dx ∀a<b,P(a<X≤b)=∫abf(x)dx
- 在 f ( x ) f(x) f(x) 的连续点处,有 F ′ ( x ) = f ( x ) \color{red}F'(x)=f(x) F′(x)=f(x);且 F ( x ) F(x) F(x)是连续函数
- 对 ∀ C , P ( X = C ) = ∫ C C f ( x ) d x = 0 \forall C,\quad P(X=C)=\int_C^C f(x)\;dx=0 ∀C,P(X=C)=∫CCf(x)dx=0
-
注意:对密度函数积分计算概率时,大部分是对分段函数的积分。
-
例题 \color{White}\colorbox{Fuchsia}{例题} 例题:设 X X X 的概率密度 f ( x ) = { a x 3 , x > 1 x , 0 ≤ x ≤ 1 0 , o t h e r s f(x)=\begin{cases}\dfrac{a}{x^3},x>1\\x,0\le x\le1 \\0,others \end{cases} f(x)=⎩⎪⎪⎨⎪⎪⎧x3a,x>1x,0≤x≤10,others
-
求 a a a
1 = ∫ − ∞ + ∞ f ( x ) d x = ∫ 0 1 x d x + ∫ 1 + ∞ a x 3 = 1 + a 2 ∴ a = 1 1=\int_{-\infty}^{+\infty}f(x)\;dx=\int_0^1xdx+\int_1^{+\infty}\dfrac{a}{x^3}=\dfrac{1+a}{2}\\ \therefore a=1 1=∫−∞+∞f(x)dx=∫01xdx+∫1+∞x3a=21+a∴a=1 -
求 F ( x ) F(x) F(x)
当 x ≤ 0 时 , F ( x ) = 0 当 0 < x ≤ 1 时 , F ( x ) = ∫ 0 x x d x = x 2 2 当 1 < x 时 , F ( x ) = 0 + 1 2 + ∫ 1 x 1 x 3 d x = 1 − 1 2 x 2 \begin{aligned} &当x\le0时,F(x)=0\\ &当0< x\le1时,F(x)=\int_0^x x\;dx=\dfrac{x^2}{2}\\ &当1< x时,F(x)=0+\dfrac{1}{2}+\int_1^x \dfrac{1}{x^3}\;dx=1-\dfrac{1}{2x^2} \end{aligned} 当x≤0时,F(x)=0当0<x≤1时,F(x)=∫0xxdx=2x2当1<x时,F(x)=0+21+∫1xx31dx=1−2x21 -
求 P ( X > 0.5 ) P(X>0.5) P(X>0.5).
P ( X > 0.5 ) = 1 − F ( 0.5 ) = 1 − 1 8 = 7 8 P(X>0.5)=1-F(0.5)=1-\dfrac{1}{8}=\dfrac{7}{8} P(X>0.5)=1−F(0.5)=1−81=87
-
-
2.3.2 常见连续型分布
-
均匀分布 Uniform Distribution:密度函数是常数
- 定义:密度函数 f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , o t h e r s \color{red} f(x)=\begin{cases}\begin{aligned}&\dfrac{1}{b-a},&a\le x\le b\\&0,&others \end{aligned} \end{cases} f(x)=⎩⎨⎧b−a1,0,a≤x≤bothers
- 记为: X ∼ U ( a , b ) \color{blue}X\sim U(a,b) X∼U(a,b)
- 分布函数: F ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , b < x F(x)=\begin{cases}\begin{aligned}&0,&x<a\\&\dfrac{x-a}{b-a},&a\le x\le b\\&1,&b<x \end{aligned}\end{cases} F(x)=⎩⎪⎪⎪⎨⎪⎪⎪⎧0,b−ax−a,1,x<aa≤x≤bb<x
-
指数分布 Exponential Distribution:密度函数是指数 ( λ > 0 \lambda>0 λ>0)
- 定义:密度函数 f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 \color{red} f(x)=\begin{cases}\begin{aligned}&\lambda e^{-\lambda x},&x>0 \\&0,&x\le 0\end{aligned} \end{cases} f(x)={λe−λx,0,x>0x≤0
- 记为: X ∼ e ( λ ) \color{blue}X\sim e(\lambda) X∼e(λ)
- 分布函数: F ( x ) = { 1 − e − λ x , x > 0 0 , x ≤ 0 F(x)=\begin{cases}\begin{aligned}&1-e^{-\lambda x},&x>0 \\ &0,&x\le 0\end{aligned}\end{cases} F(x)={1−e−λx,0,x>0x≤0
- 由于指数非负,指数分布常用于描述寿命
- 无记忆性: P ( X ≥ s + t ∣ X ≥ s ) = P ( X ≥ t ) P(X\ge s+t|X\ge s)=P(X\ge t) P(X≥s+t∣X≥s)=P(X≥t) 与 s s s 无关,只与 t t t 有关。
-
Γ \Gamma Γ 分布 Gamma Distribution:密度函数是指数 ( λ > 0 \lambda>0 λ>0)
-
Γ \Gamma Γ 函数: α > 0 \alpha>0 α>0
-
定义: Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x \color{red}\Gamma(\alpha)=\int_0^{+\infty}x^{\alpha-1}e^{-x}\;dx Γ(α)=∫0+∞xα−1e−xdx
-
性质:
- Γ ( α + 1 ) = α Γ ( α ) , α > 0 \Gamma(\alpha+1)=\alpha \Gamma(\alpha),\alpha>0 Γ(α+1)=αΓ(α),α>0
- Γ ( 2 ) = Γ ( 1 ) = 1 , Γ ( 1 2 ) = π \Gamma(2)=\Gamma(1)=1,\Gamma(\dfrac{1}{2})=\sqrt{\pi} Γ(2)=Γ(1)=1,Γ(21)=π
- 若 x ∈ N ∗ x\in N^* x∈N∗, Γ ( n ) = ( n − 1 ) ! \Gamma(n)=(n-1)! Γ(n)=(n−1)!
-
例题 \color{White}\colorbox{Fuchsia}{例题} 例题:计算
-
∫ 0 + ∞ x 2 e − 3 x d x \int_0^{+\infty}x^2e^{-3x}\;dx ∫0+∞x2e−3xdx
换 元 : 令 y = 3 x , 原 式 = 1 9 ∫ 0 + ∞ x 2 e − y 1 3 d y = 1 27 Γ ( 3 ) = 2 27 换元:令y=3x,原式=\dfrac{1}{9} \int_0^{+\infty}x^2e^{-y}\;\dfrac{1}{3} dy=\dfrac{1}{27}\Gamma(3)=\dfrac{2}{27} 换元:令y=3x,原式=91∫0+∞x2e−y31dy=271Γ(3)=272 -
∫ 0 + ∞ x 3 2 e − x d x \int_0^{+\infty}x^{3\over2}e^{-x}\;dx ∫0+∞x23e−xdx
原 式 = Γ ( 5 2 ) = 3 4 π . 原式=\Gamma(\dfrac{5}{2})=\dfrac{3}{4}\sqrt{\pi}. 原式=Γ(25)=43π.
-
-
-
定义:密度函数 f ( x ) = { β α Γ ( α ) x α − 1 e − β x , x > 0 0 , x ≤ 0 \color{red} f(x)=\begin{cases}\begin{aligned}&\dfrac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}, &x>0 \\&0,&x\le 0\end{aligned} \end{cases} f(x)=⎩⎪⎨⎪⎧Γ(α)βαxα−1e−βx,0,x>0x≤0
-
记为: X ∼ Γ ( α , β ) \color{blue}X\sim \Gamma(\alpha,\beta) X∼Γ(α,β)
当 α = 1 \alpha=1 α=1 时, Γ ( 1 , β ) \Gamma(1,\beta) Γ(1,β) 为 e ( β ) e(\beta) e(β).
-
分布函数: F ( x ) = { 1 − e − λ x , x > 0 0 , x ≤ 0 F(x)=\begin{cases}\begin{aligned}&1-e^{-\lambda x},&x>0 \\ &0,&x\le 0\end{aligned}\end{cases} F(x)={1−e−λx,0,x>0x≤0
-
2.4 随机变量函数 Y=g(X) 的分布
-
离散型:若 Y = g ( X ) Y=g(X) Y=g(X),只需要计算对应 P ( Y ) = P ( g ( X ) ) P(Y)=P(g(X)) P(Y)=P(g(X)) 时的概率。
-
连续型:
-
已知连续型 r . v X r.v X r.vX 有密度函数 f X ( x ) f_X(x) fX(x),求 Y Y Y 的密度函数 f Y ( y ) f_Y(y) fY(y) 的一般方法:先求分布,再求密度
⨀ \color{red}\bigodot ⨀ 1. 由 Y = g ( X ) Y=g(X) Y=g(X) 确定 Y Y Y 的值域 R ( Y ) R(Y) R(Y);
⨀ \color{red}\bigodot ⨀ 2. 对任意 y ∈ R ( Y ) y\in R(Y) y∈R(Y),先求 Y Y Y 的分布函数
F Y ( y ) = P ( Y ≤ y ) = P ( g ( X ) ≤ y ) = P ( X ∈ G ( y ) ) = ∫ G ( x ) ⋂ D ( x ) f X ( x ) d x \color{red}F_Y(y)=P(Y\le y)=P(g(X)\le y)=P(X\in G(y))=\int\limits_{G(x)\bigcap D(x)}f_X(x)\;dx FY(y)=P(Y≤y)=P(g(X)≤y)=P(X∈G(y))=G(x)⋂D(x)∫fX(x)dx⨀ \color{red}\bigodot ⨀ 3. 再求密度 f Y ( y ) = { F Y ′ ( y ) , y ∈ R ( Y ) 0 , y ∉ R ( Y ) f_Y(y)=\begin{cases}\begin{aligned}&\color{red}F_Y'(y),&y\in R(Y)\\ &0,&y\notin R(Y) \end{aligned}\end{cases} fY(y)={FY′(y),0,y∈R(Y)y∈/R(Y)
-
例题 \color{White}\colorbox{Fuchsia}{例题} 例题:设随机变量 X X X 的密度函数为 f ( x ) = { 1 4 ∣ x ∣ − 2 ≤ x ≤ 0 x , 0 ≤ x ≤ 1 0 , o t h e r s f(x)=\begin{cases}\begin{aligned}&\dfrac{1}{4}|x| &-2\le x\le0\\&x,&0\le x\le1 \\&0,&others\end{aligned} \end{cases} f(x)=⎩⎪⎪⎪⎨⎪⎪⎪⎧41∣x∣x,0,−2≤x≤00≤x≤1others, Y = X 2 Y=X^2 Y=X2,求 Y Y Y 的密度函数。
解:
易 得 R ( Y ) = [ 0 , 4 ] ; 对 于 ∀ y ∈ [ 0 , 4 ] , 有 F Y ( y ) = P ( X 2 ≤ y ) = P ( − y ≤ X ≤ y ) . 当 y ∈ [ 0 , 1 ] 时 , F Y ( y ) = ∫ − y y f X ( x ) d x = ∫ − y 0 1 4 ( − x ) d x + ∫ 0 y x d x = 5 8 y ; 当 y ∈ ( 1 , 4 ] 时 , F Y ( y ) = ∫ − y y f X ( x ) d x = ∫ − y 1 f X ( x ) d x = ∫ − y 0 1 4 ( − x ) d x + ∫ 0 1 x d x = y 8 + 1 2 ; 当 y ∈ ( 4 , + ∞ ) 时 , F Y ( y ) = 1 ; 当 y ∈ ( − ∞ , 1 ) 时 , F Y ( y ) = 0. 从 而 f Y ( x ) = F Y ′ ( x ) = { 5 8 , 0 ≤ y ≤ 1 1 8 , 1 < y ≤ 4 0 , o t h e r s \begin{aligned}&易得R(Y)=[0,4];&&对于\forall y\in[0,4], 有F_Y(y)=P(X^2\le y)=P(-\sqrt{y}\le X\le\sqrt{y}).\\ &当y\in[0,1]时, &&F_Y(y)=\int_{-\sqrt{y}}^{\sqrt{y}}f_X(x)\;dx=\int_{-\sqrt{y}}^0 \dfrac{1}{4}(-x) \;dx+\int_0^{\sqrt{y}} x\;dx=\dfrac{5}{8}y ;\\ &当y\in(1,4]时, &&F_Y(y)=\int_{-\sqrt{y}}^{\sqrt{y}}f_X(x)\;dx=\int_{-\sqrt{y}}^{\color{red}1} f_X(x) \;dx =\int_{-\sqrt{y}}^0 \dfrac{1}{4}(-x) \;dx+\int_0^1 x\;dx=\dfrac{y}{8}+\dfrac{1}{2} ;\\ &当y\in(4,+\infty)时, &&F_Y(y)= 1;\\ &当y\in(-\infty,1)时, &&F_Y(y)= 0.\\ \end{aligned}\\ 从而f_Y(x)=F_Y'(x) =\begin{cases}\dfrac{5}{8},0\le y\le1 \\ \dfrac{1}{8},1<y\le 4\\0,others \end{cases} 易得R(Y)=[0,4];当y∈[0,1]时,当y∈(1,4]时,当y∈(4,+∞)时,当y∈(−∞,1)时,对于∀y∈[0,4],有FY(y)=P(X2≤y)=P(−y≤X≤y).FY(y)=∫−yyfX(x)dx=∫−y041(−x)dx+∫0yxdx=85y;FY(y)=∫−yyfX(x)dx=∫−y1fX(x)dx=∫−y041(−x)dx+∫01xdx=8y+21;FY(y)=1;FY(y)=0.从而fY(x)=FY′(x)=⎩⎪⎪⎪⎨⎪⎪⎪⎧85,0≤y≤181,1<y≤40,others -
例题 \color{White}\colorbox{Fuchsia}{例题} 例题: X X X 有连续且严格增加的分布函数 F ( x ) F(x) F(x), Y = − 2 ln F ( X ) Y=-2\ln{F(X)} Y=−2lnF(X),求 Y Y Y 的密度函数 f Y ( y ) f_Y(y) fY(y).
解:
易 得 R ( Y ) = [ 0 , + ∞ ) ; 对 于 ∀ y ∈ [ 0 , + ∞ ) , 有 F Y ( y ) = P ( − 2 ln F ( X ) ≤ y ) = P ( F ( X ) ≥ e − y 2 ) = P ( X ≥ F − 1 ( e − y 2 ) ) = 1 − F ( F − 1 ( e − y 2 ) ) = 1 − e − y 2 ; 当 y ≤ 0 , 显 然 F Y ( y ) = 0. 从 而 f Y ( x ) = F Y ′ ( x ) = { 1 2 e − y 2 , y > 1 0 , y ≤ 0 易得R(Y)=[0,+\infty);\\ \begin{aligned} 对于\forall y\in[0,+\infty), 有F_Y(y)&=P(-2\ln{F(X)}\le y)\\ &=P(F(X)\ge e^{-{y\over2}})\\ &=P(X\ge F^{-1}(e^{-{y\over2}}))\\ &=1-F(F^{-1}(e^{-{y\over2}}))\\ &=1-e^{-{y\over2}}; \end{aligned}\\ 当y\le0,显然F_Y(y)=0. \\ 从而f_Y(x)=F_Y'(x) =\begin{cases}\dfrac{1}{2}e^{-{y\over2}},y>1 \\ 0,y\le 0 \end{cases} 易得R(Y)=[0,+∞);对于∀y∈[0,+∞),有FY(y)=P(−2lnF(X)≤y)=P(F(X)≥e−2y)=P(X≥F−1(e−2y))=1−F(F−1(e−2y))=1−e−2y;当y≤0,显然FY(y)=0.从而fY(x)=FY′(x)=⎩⎨⎧21e−2y,y>10,y≤0
-