第2章 图像信息的基本知识

第二章 图像信息的基本知识和运算

“图”:物体透射光或反射光的分布(客观存在)

“像”:视觉系统接收图后在大脑中形成的印象与认识(人为感觉)

2.1 数字图像术语与表示

  • 相关术语

    • 像素:构成数字图像的最小单位

    • 灰度:亮度,即色彩的深浅程度

    • 图像的数字化 Digitizing:对模拟图像信号离散化的过程,包括空间离散化和幅值离散化

      • “转换”是非破坏性的
    • 扫描 Scan:对图像内给定位置(元素位置)寻址

    • 采样 Sampling:对图像进行空间上的离散化处理,即用空间上部分点的灰度值表示图像

      • 一般有点阵采样正交系数采样
    • 量化 Quantization/整量化:对图像进行灰度幅值的离散化处理,即对每个样点值数值化

      • 一般有均匀量化非均匀量化
    • 对比度Contrast Ratio:图片中灰度反差的大小
      对比度 = 最大亮度 最小亮度 \text{对比度}=\dfrac{\text{最大亮度} }{\text{最小亮度}} 对比度=最小亮度最大亮度

    • 分辨率 Resolution

      • 灰度分辨率:值的单位幅度上包含的灰度级数
        • 若用8bit储存,则灰度级有256级
      • 空间分辨率:图像可辨别的最小细节
        • 采样间隔为主要参数
  • 表示方法

    • 矩阵表示法:等间隔采样,排成 M × N M\times N M×N 矩阵
      • 灰度图像灰度级取6b~12b
      • 彩色图像RGB各用8b,共24b表示每个像素
      • 二值图像每个像素1b
    • 链码 Freeman码:表示二值图像,省空间。常见有4方向或8方向
    • 常见文件格式:BMP(未压缩的原始矩阵),GIF(支持动画),JPG(有损压缩),PNG(便于传输)

2.2 图像与视觉

  • 人眼成像方式:

    • 锥状细胞:视网膜上主导明视觉活动的感光细胞
    • 柱状细胞:在夜视起作用,但不能感知颜色
    • 不同颜色对应不同波长
  • 人眼适应的亮度范围:

    • 总体范围大:从暗视觉极限眩目极限之间的范围在 1 0 10 10^{10} 1010 量机
    • 具体范围小:一般范围在 1 0 5 10^{5} 105 量级
    • 机器调节:调整快门(曝光)时间(从 1 s 1s 1s 1 0 − 5 s 10^{-5}s 105s)和光圈大小

2.3 像素间的基本关系

  • 像素的邻域 Neighborhood:邻近像素

    • 4-邻域 N 4 ( p ) N_4(p) N4(p):坐标为 $(x+1,y),(x-1,y),(x,y+1),(x,y-1) $ 的像素
    • D-邻域 N D ( p ) N_D(p) ND(p):坐标为 $(x+1,y+1),(x+1,y-1),(x-1,y-1),(x-1,y+1) $ 的像素
    • 8-邻域 N 8 ( p ) N_8(p) N8(p):坐标 N 4 ( p ) N_4(p) N4(p) N D ( p ) N_D(p) ND(p) 的并集
  • 连通性 Connectivity:描述目标边界和区域元素

    • 连通
      • 条件
        1. 两像素位置上相邻
        2. 两像素灰度相似:灰度值集合 V = { 8 , 9 , . . . , a 16 } V=\{8,9,...,a16 \} V={8,9,...,a16} 表示考虑灰度值在 8 ∼ 16 8\sim 16 816 的像素的连通性。
      • 分类:4-连通,8-连通,m-连通
    • 临近
      • 像素临近:若像素 p p p 和像素 q q q 是连通的,则称像素 p p p 临近于 q q q。可同样定义4-临近、8-临近和m-临近
      • 子图临近:若子图 S 1 S_1 S1 S 2 S_2 S2 中某些像素是临近的,则称 S 1 S_1 S1 S 2 S_2 S2 是临近的
    • 路径:满足相邻像素临近的序列
  • 距离量度:欧氏距离,城市距离(曼哈顿距离),棋盘距离( D = max ⁡ ( ∣ x 1 − x 2 ∣ , ∣ y 1 − y 2 ∣ ) D=\max(|x_1-x_2|,|y_1-y_2|) D=max(x1x2,y1y2))

2.4 基本运算

2.4.1 代数运算 Algebraic Operation

Opencv代数运算常用函数可查看 Opencv代数运算

  • 基本代数运算:集合位置不变,对图像灰度级进行加减乘除或逻辑运算。
    s ( x , y ) = α f ( x , y ) ∗ β g ( x , y ) ∗ 为 + , − , × , ÷ , b i t w i s e s(x,y)=\alpha f(x,y)* \beta g(x,y)\qquad *为+,-,\times,\div,bitwise s(x,y)=αf(x,y)βg(x,y)+,,×,÷,bitwise
    其中 f ( x , y ) , g ( x , y ) f(x,y),g(x,y) f(x,y),g(x,y) 为输入图像, s ( x , y ) s(x,y) s(x,y) 为输出图像

  • 代数运算应用

    • 加运算降低随机噪音:设第 k k k 帧图像表示为 f k ( x , y ) = s ( x , y ) + n k ( x , y ) f_k(x,y)=s(x,y)+n_k(x,y) fk(x,y)=s(x,y)+nk(x,y),其中 s ( x , y ) s(x,y) s(x,y) 为理想图像, n k ( x , y ) n_k(x,y) nk(x,y)​ 为噪声图像。若噪声图像为零均值且各帧独立,即满足
      E { n k ( x , y ) } = 0 E { n k ( x , y ) + n j ( x , y ) } = E { n k ( x , y ) } + E { n j ( x , y ) } E { n k ( x , y ) ⋅ n j ( x , y ) } = E { n k ( x , y ) } ⋅ E { n j ( x , y ) } \begin{aligned} E\{n_k(x,y) \}&=0\\ E\{n_k(x,y)+n_j(x,y) \}&=E\{n_k(x,y) \}+E\{n_j(x,y) \}\\ E\{n_k(x,y)\cdot n_j(x,y) \}&=E\{n_k(x,y) \}\cdot E\{n_j(x,y) \} \end{aligned} E{nk(x,y)}E{nk(x,y)+nj(x,y)}E{nk(x,y)nj(x,y)}=0=E{nk(x,y)}+E{nj(x,y)}=E{nk(x,y)}E{nj(x,y)}
      对于图像任意点,有功率信噪比定义为
      η 0 ( x , y ) = s 2 ( x , y ) E { n 2 ( x , y ) } \color{red}\eta_0(x,y)=\dfrac{s^2(x,y)}{E\{n^2(x,y) \}} η0(x,y)=E{n2(x,y)}s2(x,y)
      M M M 帧图像求平均有
      g ( x , y ) = 1 M ∑ i = 1 M [ s ( x , y ) + n i ( x , y ) ] g(x,y)=\dfrac{1}{M}\sum\limits_{i=1}^{M}[s(x,y)+n_i(x,y)] g(x,y)=M1i=1M[s(x,y)+ni(x,y)]
      则输出图像的信噪比为
      η 1 = s 2 ( x , y ) E { [ ( 1 M ) ∑ i = 1 M n i ( x , y ) ] 2 } = M η 0 ( x , y ) \eta_1=\dfrac{s^2(x,y)}{E\left\{\left[\left(\dfrac{1}{M}\right)\sum\limits_{i=1}^{M}n_i(x,y)\right]^2 \right\}}=\color{red}M\eta_0(x,y) η1=E{[(M1)i=1Mni(x,y)]2}s2(x,y)=Mη0(x,y)
      故对 M M M 帧图像求平均后,输出图像的信噪比提高了 M M M 倍。

    • 加运算进行图像融合 Image Fusion:根据不同像素重要程度自动计算加法权重实现互补,使得多幅图像信息能够取长补短。例可见光与红外图像的融合

    • 减运算检测运动区域:根据运动序列图像中运动帧与背景帧间的差异,利用差分法使图像相减,可以对运动目标进行检测,从而实现运动目标定位、跟踪。

    • 减运算提取梯度函数:根据梯度函数定义得到每个点斜率的陡峭程度
      ∇ f ( x , y ) = i    ∂ f ( x , y ) ∂ x + j    ∂ f ( x , y ) ∂ y \nabla f(x,y)=i\;\dfrac{\partial f(x,y)}{\partial x}+j\;\dfrac{\partial f(x,y)}{\partial y} f(x,y)=ixf(x,y)+jyf(x,y)
      在数字图像中可用差分近似
      ∣ ∇ f ( x , y ) ∣ ≈ max ⁡ ( ∣ f ( x , y ) − f ( x + 1 , y ) ∣ , ∣ f ( x , y ) − f ( x , y + 1 ) ∣ ) |\nabla f(x,y)|\approx\max(|f(x,y)-f(x+1,y) |, |f(x,y)-f(x,y+1) |) ∣∇f(x,y)max(f(x,y)f(x+1,y),f(x,y)f(x,y+1))
      表斜率陡峭程度。在物体边缘,梯度幅值较大。

2.4.2 几何运算 Geometric Operation

  • 几何运算定义:通过图像像素位置的变换,直接确定该像素灰度的运算。一般几何运算需要先定义空间变换,后利用灰度级插值填充整数坐标。

    在输入图像 f ( x , y ) f(x,y) f(x,y) 中,灰度值仅在整数位置 ( x , y ) (x,y) (x,y) 处被定义,而 g ( x ′ , y ′ ) g(x',y') g(x,y) 的灰度值一般由非整数坐标上的 f ( x , y ) f(x,y) f(x,y) 来确定。故 f f f 中的一个像素会映射到 g g g 中的几个像素之间的位置,会产生一些空洞,因此需要灰度级插值进行填充。

    • 一般空间变换的表达式为
      g ( x ′ , y ′ ) = g ( a ( x , y ) , b ( x , y ) ) = f ( x , y ) ( ∗ ) g(x',y')=g(a(x,y),b(x,y))=f(x,y)\qquad (*) g(x,y)=g(a(x,y),b(x,y))=f(x,y)()

    • 灰度级插值常用最近邻插值法或双线性插值法

  • 基础几何运算

    • 刚性变换 Rigid Transformation:不会改变图像的外形,又称相似性变换

      • 平移变换 Translation:令 a ( x , y ) = x + x 0 , b ( x , y ) = y + y 0 a(x,y)=x+x_0,b(x,y)=y+y_0 a(x,y)=x+x0,b(x,y)=y+y0 可得到平移变换(输出结果为整数,不需要插值处理)

      • 缩放变换 Zoom Out/Zoom In:令 a ( x , y ) = x c , b ( x , y ) = y d a(x,y)=\dfrac{x}{c} ,b(x,y)=\dfrac{y }{d} a(x,y)=cx,b(x,y)=dy (需要插值处理)

      • 旋转变换 Rotation:令 a ( x , y ) = x cos ⁡ θ − y sin ⁡ θ , b ( x , y ) = x sin ⁡ θ + y cos ⁡ θ a(x,y)=x\cos\theta-y\sin\theta,b(x,y)=x\sin\theta+y\cos\theta a(x,y)=xcosθysinθ,b(x,y)=xsinθ+ycosθ

        注意:

        1. 旋转后尺寸变大
        2. 计算后坐标会有负值,需要整体平移
        3. 最后需要插值处理
      • 水平镜像:令 a ( x , y ) = x , b ( x , y ) = w − y a(x,y)=x ,b(x,y)=w-y a(x,y)=x,b(x,y)=wy

      • 垂直镜像:令 a ( x , y ) = h − x , b ( x , y ) = y a(x,y)=h-x ,b(x,y)=y a(x,y)=hx,b(x,y)=y

    • 非刚性变换 Non-grid Transformation:图像形状改变

      • 射影变换 Projective Transformation:需要4对匹配点组成8个方程,原来平行的边界不再平行。
        { a ( x , y , z ) = m x x x + m x y y + m x z z + t x b ( x , y , z ) = m y x x + m y y y + m y z z + t y c ( x , y , z ) = m z x x + m z y y + m z z z + 1 \begin{cases} a(x,y,z)=m_{xx}x+m_{xy}y+m_{xz}z+t_x\\ b(x,y,z)=m_{yx}x+m_{yy}y+m_{yz}z+t_y\\ c(x,y,z)=m_{zx}x+m_{zy}y+m_{zz}z+1\\ \end{cases} a(x,y,z)=mxxx+mxyy+mxzz+txb(x,y,z)=myxx+myyy+myzz+tyc(x,y,z)=mzxx+mzyy+mzzz+1

      • 仿射变换 Affine Transformation:需要3对匹配点组成6个方程,原来平行的边界保持平行。
        { a ( x , y , z ) = m x x x + m x y y + t x b ( x , y , z ) = m y x x + m y y y + t y \begin{cases} a(x,y,z)=m_{xx}x+m_{xy}y+t_x\\ b(x,y,z)=m_{yx}x+m_{yy}y+t_y\\ \end{cases} {a(x,y,z)=mxxx+mxyy+txb(x,y,z)=myxx+myyy+ty

  • 几何运算应用:处理几何畸变,遥感图像匹配,医学图像配准

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值