第三章 行列式(线性代数)

本文详细介绍了方阵的行列式及其性质,包括计算方法如行列式的展开、余子式和代数余子式,以及逆矩阵、行列式为零的几何意义。还探讨了行列式的应用,如克莱姆法则和向量的内积与外积。此外,解释了如何通过行列式解决二元线性方程组和计算特定类型的行列式。最后,列举了一些计算行列式的特殊技巧,如归一法、爪形法和递推法。
摘要由CSDN通过智能技术生成

行列式

一、方阵的行列式

  • 1、 n n n阶方阵 A A A对应一个数,记为 d e t A detA detA ∣ A ∣ |A| A方阵 A A A可逆的充要条件是 ∣ A ∣ ≠ 0 |A|\ne 0 A=0.

  • 2、 M i j M_{ij} Mij(余子式)表示方阵 A n A_n An删除第 i i i行第 j j j列得到的 n − 1 n-1 n1阶方阵的行列式(是一个值)。 A i j A_{ij} Aij(代数余子式) = ( − 1 ) i + j M i j =(-1)^{i+j}M_{ij} =(1)i+jMij

    ∣ A 3 ∣ = a 11 M 11 − a 12 M 12 + a 13 M 13 |A_3|=a_{11}M_{11}-a_{12}M_{12}+a_{13}M_{13} A3=a11M11a12M12+a13M13.或 ∣ A 3 ∣ = a 11 A 11 + a 12 A 12 + a 13 A 13 |A_3|=a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13} A3=a11A11+a12A12+a13A13.

例: 计 算 三 角 形 方 阵 的 行 列 式 ∣ A ∣ = ∣ a 11 a 12 1 13 . . . a 1 n 0 a 22 a 23 . . . a 2 n 0 0 a 33 . . . a 2 n ⋮ ⋮ ⋮ ⋮ 0 0 0 . . . a n n ∣ \color{blue}计算三角形方阵的行列式|A|=\begin{vmatrix}a_{11}&a_{12}&1_{13}&...&a_{1n}\\0&a_{22}&a_{23}&...&a_{2n}\\0&0&a_{33}&...&a_{2n}\\ \vdots&\vdots&\vdots& &\vdots \\ 0&0&0&...&a_{nn}\end{vmatrix} A=a11000a12a2200113a23a330............a1na2na2nann

解:
沿 主 对 角 线 展 开 : ∣ A ∣ = a 11 a 22 a 33 . . . a n n . 沿主对角线展开: |A|=a_{11}a_{22}a_{33}...a_{nn}. 沿线A=a11a22a33...ann.
例: 平 行 四 边 形 ( 0 , 0 ) ( a , b ) ( c , d ) ( a + c , b + d ) \color{blue}平行四边形(0,0)(a,b)(c,d)(a+c,b+d) (00)(ab)(cd)(a+cb+d),则面积为 ∣ a b c d ∣ = a d − b c \begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc acbd=adbc.

​ 注意:当 ( a , b ) → ( c , d ) (a,b)\rightarrow(c,d) (a,b)(c,d)逆时针时,面积为正;顺时针时,面积为负

在这里插入图片描述

  • 3、对于二元线性方程组 { a 11 x + a 12 y = b 1 a 21 x + a 22 y = b 2 \begin{cases}a_{11}x+a_{12}y=b_1\\a_{21}x+a_{22}y=b_2\end{cases} {a11x+a12y=b1a21x+a22y=b2

    D = ∣ a 11 a 12 a 21 a 22 ∣ , D 1 = ∣ b 1 a 12 b 2 a 22 ∣ , D 2 = ∣ a 11 b 1 a 21 b 2 ∣ D=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix},D_1=\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix},D_2=\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix} D=a11a21a12a22D1=b1b2a12a22D2=a11a21b1b2.

    D ≠ 0 D\ne0 D=0,则解为 x = D 1 D = ∣ b 1 a 12 b 2 a 22 ∣ ∣ a 11 a 12 a 21 a 22 ∣ , y = D 2 D = ∣ a 11 b 1 a 21 b 2 ∣ ∣ a 11 a 12 a 21 a 22 ∣ x={\color{red}\dfrac{D_1}{D}}=\dfrac{\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}},y={\color{red}\dfrac{D_2}{D}}=\dfrac{\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}} x=DD1=a11a21a12a22b1b2a12a22y=DD2=a11a21a12a22a11a21b1b2

  • 4、逆序数全为奇(偶)的行列式称作奇(偶)排列:

    ∣ 1 2 3 2 3 1 3 1 2 ∣ \begin{vmatrix}1&2&3\\2&3&1\\3&1&2\end{vmatrix} 123231312逆序数(从左至右,看每个数后面比它小的数的个数)分别为0、2、2,故为偶排列

    ∣ A 3 ∣ = ∑ ( − 1 ) τ ( j 1 , j 2 , j 3 ) a 1 j 1 a 2 j 2 a 3 j 3 = ∑ ( − 1 ) τ ( i 1 , i 2 , i 3 ) a i 1 1 a i 2 2 a i 3 3 |A_3|=\sum (-1)^{\tau(j_1,j_2,j_3)}a_{1j_1}a_{2j_2}a_{3j_3}=\sum (-1)^{\tau(i_1,i_2,i_3)}a_{i_11}a_{i_22}a_{i_33} A3=(1)τ(j1,j2,j3)a1j1a2j2a3j3=(1)τ(i1,i2,i3)ai11ai22ai33

  • 5、几个定理:

    • (1) ∣ A ∣ = ∣ A T ∣ |A|=|A^T| A=AT
    • (2)若某一行(列)全为0,则 ∣ A ∣ = 0 |A|=0 A=0
    • (3)若某一行(列)对应相等,则 ∣ A ∣ = 0 |A|=0 A=0
    • (4)若某一行(列)可表示两项之和,则可拆分,注意== ∣ A + B ∣ ≠ ∣ A ∣ + ∣ B ∣ |A+B|\ne|A|+|B| A+B=A+B==

二、行列式的性质

  • 1、交换两行,符号改变 ∣ P A ∣ = − ∣ A ∣ = ∣ P ∣ ∣ A ∣ |PA|=-|A|=|P||A| PA=A=PA.

    ∣ B ∣ |B| B为初等矩阵时 ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB|=|A|\cdot|B| AB=AB,否则 ∣ A B ∣ ≠ ∣ A ∣ ⋅ ∣ B ∣ |AB|\ne|A|\cdot|B| AB=AB

  • 2、倍乘某一行(列),数值改变 ∣ P A ∣ = k ∣ A ∣ = ∣ P ∣ ∣ A ∣ |PA|=k|A|=|P||A| PA=kA=PA.

  • 3、倍加某一行(列)到另一行(列),数值不变 ∣ P A ∣ = ∣ A ∣ = ∣ P ∣ ∣ A ∣ |PA|=|A|=|P||A| PA=A=PA.

    证: ∣ A ∣ = ∣ a 11 + k a 21 a 12 + k a 22 a 21 a 22 ∣ = ∣ a 11 a 12 a 21 a 22 ∣ + ∣ k a 21 k a 22 a 21 a 22 ∣ = ∣ A ∣ + 0 |A|=\begin{vmatrix}a_{11}+ka_{21}&a_{12}+ka_{22}\\a_{21}&a_{22}\end{vmatrix}=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}+\begin{vmatrix}ka_{21}&ka_{22}\\a_{21}&a_{22}\end{vmatrix}=|A|+0 A=a11+ka21a21a12+ka22a22=a11a21a12a22+ka21a21ka22a22=A+0.

    • 推论:某一行是另一行的背书,则行列式为零
  • 行列式等于零的几何意义:n个向量可确定的空间维数小于n

三、行列式的计算

  • 1.归一法(适用于每一行(列)之和全部相同)

  • 2.爪形法(特殊形状,需要变形)

    在这里插入图片描述
    在这里插入图片描述

  • 3.升阶法(适用于每一行(列)有类似变形后的共因子)

  • 4.范德蒙(特殊形状,需要变形)

    ​ 例: 求 ∣ 1 1 1 1 a b c d a 2 b 2 c 2 d 2 a 4 b 4 c 4 d 4 ∣ \color{blue}求\begin{vmatrix}1&1&1&1 \\a&b&c&d \\a^2&b^2&c^2&d^2 \\ a^4&b^4&c^4&d^4 \end{vmatrix} 1aa2a41bb2b41cc2c41dd2d4

    ​ 解:先升阶法,再范德蒙

    等 价 于 求 ∣ 1 1 1 1 1 a b c d x a 2 b 2 c 2 d 2 x 2 a 3 b 3 c 3 d 3 x 3 a 4 b 4 c 4 d 4 x 4 ∣ 中 x 3 的 系 数 ( 即 ( − 1 ) 4 + 5 M 45 ) 除 以 ( − 1 ) 4 + 5 ( 即 M 45 为 答 案 ) , 其 中 x 3 系 数 为 ( x − a ) ( x − b ) ( x − c ) ( x − d ) ∏ a ≤ i < j ≤ d ( j − i ) 中 x 3 的 系 数 = ( − a − b − c − d ) ∏ a ≤ i < j ≤ d ( j − i ) ∴ 答 案 为 ( a + b + c + d ) ∏ a ≤ i < j ≤ d ( j − i ) . 等价于求\begin{vmatrix}1&1&1&1&1 \\a&b&c&d&x \\a^2&b^2&c^2&d^2&x^2 \\a^3&b^3&c^3&d^3&x^3 \\ a^4&b^4&c^4&d^4&x^4 \end{vmatrix}中x^3的系数(即(-1)^{4+5}M_{45})除以(-1)^{4+5}(即M_{45}为答案), \\ 其中x^3系数为(x-a)(x-b)(x-c)(x-d)\prod\limits_{a\le i < j \le d}(j-i)中x^3的系数=(-a-b-c-d)\prod\limits_{a\le i < j \le d}(j-i) \\ \therefore 答案为(a+b+c+d)\prod\limits_{a\le i < j \le d}(j-i). 1aa2a3a41bb2b3b41cc2c3c41dd2d3d41xx2x3x4x3((1)4+5M45)(1)4+5(M45)x3(xa)(xb)(xc)(xd)ai<jd(ji)x3=(abcd)ai<jd(ji)(a+b+c+d)ai<jd(ji).

  • 5.分块法(成块时,例 ∣ 1 − 4 0 0 0 1 2 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 1 2 ∣ \begin{vmatrix}\boxed 1&\boxed {-4}&0&0&0 \\\boxed 1&\boxed 2&0&0&0 \\0&0&\boxed 2&0&0 \\0&0&0&\boxed 3&\boxed 0 \\ 0&0&0&\boxed 1&\boxed 2 \end{vmatrix} 1100042000002000003100002

    • 一些小性质:
      • 1. ∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ . . . ∣ A s ∣ |A|=|A_1||A_2|...|A_s| A=A1A2...As
      • 2.若 ∣ A i ∣ ≠ 0 |A_i|\ne0 Ai=0,则 ∣ A ∣ ≠ 0 |A|\ne0 A=0,且 A − 1 = ∣ A 1 − 1 0 . . . 0 0 A 2 − 1 . . . 0 ⋮ ⋮ ⋮ 0 0 . . . A s − 1 ∣ A^{-1}=\begin{vmatrix}A_1^{-1}&0&...&0 \\0&A_2^{-1}&...&0 \\ \vdots&\vdots& &\vdots \\ 0&0&...&A_s^{-1} \end{vmatrix} A1=A11000A210.........00As1.
      • 3. A k = ∣ A 1 k 0 . . . 0 0 A 2 k . . . 0 ⋮ ⋮ ⋮ 0 0 . . . A s k ∣ A^k=\begin{vmatrix}A_1^k&0&...&0 \\0&A_2^k&...&0 \\ \vdots&\vdots& &\vdots \\ 0&0&...&A_s^k \end{vmatrix} Ak=A1k000A2k0.........00Ask.
  • 6.Laplace(高阶某几行零很多时)

  • 7.递推法(推出数列递推式,例三条平行线)

    ​ 例: 求 D n = ∣ x 1 x 3 . . . . . . . . . 0 x 2 x 1 x 3 . . . . . . 0 0 x 2 x 1 x 3 . . . 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 . . . x 2 x 1 x 3 0 0 . . . . . . x 2 x 1 x 3 0 . . . . . . . . . x 2 x 1 ∣ n \color{blue}求D_n=\begin{vmatrix}x_1&x_3&...&...&...&0 \\x_2&x_1&x_3&...&...&0 \\0&x_2&x_1&x_3&...&0 \\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\0&...&x_2&x_1&x_3&0 \\0&...&...&x_2&x_1&x_3 \\ 0&...&...&...&x_2&x_1 \end{vmatrix}_n Dn=x1x20000x3x1x2............x3x1x2............x3x1x2............x3x1x20000x3x1n

    ​ 解:化为数列
    从 右 下 开 始 展 : D n = ( − 1 ) 2 n x 1 D n − 1 + ( − 1 ) 2 n − 1 x 3 [ ( − 1 ) 2 n − 2 x 2 D n − 2 ] 得 : D n = x 1 D n − 1 − x 3 x 2 D n − 2 从右下开始展:D_n=(-1)^{2n}x_1D_{n-1}+(-1)^{2n-1}x_3[(-1)^{2n-2}x_2D_{n-2}] \\ 得:D_n=x_1D_{n-1}-x_3x_2D_{n-2} Dn=(1)2nx1Dn1+(1)2n1x3[(1)2n2x2Dn2]Dn=x1Dn1x3x2Dn2

  • 8.转置(反对称)

  • 9.基本性质 ∣ A ∣ = ∣ A T ∣ , ∣ A B ∣ = ∣ A ∣ ∣ B ∣ , ∣ A B ∣ ≠ ∣ A ∣ + ∣ B ∣ , ∣ k A ∣ = k n ∣ A ∣ \color{red}|A|=|A^T|,|AB|=|A||B| ,|AB|\ne|A|+|B|,|kA|=k^n|A| A=ATAB=ABAB=A+BkA=knA

    ​ 特殊的,正交阵 A A A ∣ A ∣ 2 = 1 |A|^2=1 A2=1,证: ∣ A ∣ 2 = ∣ A ∣ ∣ A T ∣ = ∣ A A T ∣ = ∣ E ∣ = 1 |A|^2=|A||A^T|=|AA^T|=|E|=1 A2=AAT=AAT=E=1.

    ​ 例: n 阶 正 交 阵 A , B 满 足 ∣ A ∣ + ∣ B ∣ = 0 , 证 明 ∣ A + B ∣ = 0 \color{blue}n阶正交阵A,B满足|A|+|B|=0,证明|A+B|=0 nA,BA+B=0,A+B=0

    ​ 解:
    ∵ A A T = E , B B T = E ∣ A + B ∣ = ∣ B B T A + B A T A ∣ = ∣ B ( B T + A T ) A ∣ = ∣ B ∣ ∣ ( B + A ) T ∣ ∣ A ∣ = ∣ B ∣ ∣ B + A ∣ ∣ A ∣ = − ∣ B ∣ 2 ∣ B + A ∣ = − ∣ B + A ∣ . ∴ ∣ A + B ∣ = 0. \because AA^T=E,BB^T=E \\ |A+B|=|BB^TA+BA^TA|=|B(B^T+A^T)A|=|B||(B+A)^T||A|=|B||B+A||A|=-|B|^2|B+A|=-|B+A|. \\ \therefore |A+B|=0. AAT=E,BBT=EA+B=BBTA+BATA=B(BT+AT)A=B(B+A)TA=BB+AA=B2B+A=B+A.A+B=0.
    ​ 例: 求 ∣ a 2 ( a + 1 ) 2 ( a + 2 ) 2 ( a + 3 ) 2 b 2 ( b + 1 ) 2 ( b + 2 ) 2 ( b + 3 ) 2 c 2 ( c + 1 ) 2 ( c + 2 ) 2 ( c + 3 ) 2 d 2 ( d + 1 ) 2 ( d + 2 ) 2 ( d + 3 ) 2 ∣ \color{blue}求\begin{vmatrix}a^2&(a+1)^2&(a+2)^2&(a+3)^2 \\b^2&(b+1)^2&(b+2)^2&(b+3)^2 \\c^2&(c+1)^2&(c+2)^2&(c+3)^2 \\d^2&(d+1)^2&(d+2)^2&(d+3)^2 \end{vmatrix} a2b2c2d2(a+1)2(b+1)2(c+1)2(d+1)2(a+2)2(b+2)2(c+2)2(d+2)2(a+3)2(b+3)2(c+3)2(d+3)2

    ​ 解:
    原 式 = ∣ a 2 a 2 + 2 a + 1 a 2 + 4 a + 4 a 2 + 6 a + 9 b 2 b 2 + 2 b + 1 b 2 + 4 b + 4 b 2 + 6 b + 9 c 2 c 2 + 2 c + 1 c 2 + 4 c + 4 c 2 + 6 c + 9 d 2 d 2 + 2 d + 1 d 2 + 4 d + 4 d 2 + 6 d + 9 ∣ = ∣ a 2 a 1 0 b 2 b 1 0 c 2 c 1 0 d 2 d 1 0 ∣ × ∣ 1 1 1 1 0 2 4 6 0 1 4 9 0 0 0 0 ∣ = 0. 原式=\begin{vmatrix}a^2&a^2+2a+1&a^2+4a+4&a^2+6a+9 \\ b^2& b^2+2b+1& b^2+4b+4& b^2+6b+9 \\ c^2& c^2+2c+1& c^2+4c+4& c^2+6c+9\\ d^2& d^2+2d+1& d^2+4d+4& d^2+6d+9\end{vmatrix} = \begin{vmatrix} a^2& a& 1& 0\\ b^2& b& 1& 0 \\ c^2& c& 1& 0\\ d^2& d& 1& 0\end{vmatrix}\times \begin{vmatrix} 1& 1& 1& 1\\ 0& 2& 4& 6 \\ 0& 1& 4& 9\\ 0& 0& 0& 0\end{vmatrix} = 0. =a2b2c2d2a2+2a+1b2+2b+1c2+2c+1d2+2d+1a2+4a+4b2+4b+4c2+4c+4d2+4d+4a2+6a+9b2+6b+9c2+6c+9d2+6d+9=a2b2c2d2abcd11110000×1000121014401690=0.
    ​ 例: 求 ∣ a x + b y a y + b z a z + b x a y + b z a z + b x a x + b y a z + b x a x + b y a y + b x ∣ \color{blue}求\begin{vmatrix} ax+by& ay+bz& az+bx\\ ay+bz& az+bx& ax+by \\ az+bx& ax+by& ay+bx \end{vmatrix} ax+byay+bzaz+bxay+bzaz+bxax+byaz+bxax+byay+bx

    ​ 解:
    原 式 = ∣ a b 0 0 a b b 0 a ∣ × ∣ x y z y z x z x y ∣ = ( a 3 + b 3 ) ∣ x y z y z x z x y ∣ . 原式=\begin{vmatrix} a& b& 0\\ 0& a& b \\ b& 0& a \end{vmatrix}\times \begin{vmatrix} x& y& z\\ y& z& x \\ z& x& y \end{vmatrix}=(a^3+b^3)\begin{vmatrix} x& y& z\\ y& z& x \\ z& x& y \end{vmatrix}. =a0bba00ba×xyzyzxzxy=(a3+b3)xyzyzxzxy.

  • 综合:

    例: 求 ∣ a 0 − 1 1 0 a 1 − 1 − 1 1 a 0 1 − 1 0 a ∣ 求\color{blue}\begin{vmatrix}a&0&-1&1\\0&a&1&-1\\-1&1&a&0 \\ 1&-1&0&a \end{vmatrix} a0110a1111a0110a.

    解法1:因为每行和相等:归一法

原 式 = a ∣ 1 0 − 1 1 1 a 1 − 1 1 1 a 0 1 − 1 0 a ∣ = a ∣ 1 0 − 1 1 0 a 2 − 2 0 1 a + 1 − 1 0 − 1 1 a − 1 ∣ = a ∣ a 2 − 2 1 a + 1 − 1 − 1 1 a − 1 ∣ 原式=a\begin{vmatrix}1&0&-1&1 \\1&a&1&-1 \\1&1&a&0 \\1&-1&0&a \end{vmatrix} = a\begin{vmatrix}1&0&-1&1 \\0&a&2&-2 \\0&1&a+1&-1 \\0&-1&1&a-1 \end{vmatrix} = a\begin{vmatrix}a&2&-2 \\1&a+1&-1 \\-1&1&a-1 \end{vmatrix} =a11110a1111a0110a=a10000a1112a+11121a1=aa112a+1121a1
​ 解法2:展开(按行展开 or Laplace展开)

​ 解法3:转成爪形

四、行列式的应用

  • 1.伴随矩阵: A ∗ = ∣ A 1 1 A 2 1 . . . A n 1 A 1 2 A 2 2 . . . A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n . . . A n n ∣ A^*=\begin{vmatrix}A_{{\color{red}1}1}&A_{{\color{red}2}1}&...&A_{{\color{red}n}1} \\A_{{\color{red}1}2}&A_{{\color{red}2}2}&...&A_{{\color{red}n}2} \\ \vdots&\vdots& &\vdots \\A_{{\color{red}1}n}&A_{{\color{red}2}n}&...&A_{{\color{red}n}n} \end{vmatrix} A=A11A12A1nA21A22A2n.........An1An2Ann(注意已转置),其中 A i j A_{ij} Aij为代数余子式(行列式的值)

    则有 A ⋅ A ∗ = ∣ A ∣ ⋅ E n A\cdot A^*=|A|\cdot E_n AA=AEn,即 A ∗ = ∣ A ∣ ⋅ A − 1 \color{red}A^*=|A|\cdot A^{-1} A=AA1 .

    • 逆: A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\dfrac{1}{|A|}A^* A1=A1A ∴ ∣ A − 1 ∣ = ∣ A ∣ n − 1 ∣ A ∣ n = ∣ A ∣ − 1 \therefore |A^{-1}|=\dfrac{|A|^{n-1}}{|A|^n}=|A|^{-1} A1=AnAn1=A1.

    • ( A ∗ ) − 1 = 1 ∣ A ∣ A , ( A − 1 ) ∗ = ∣ A − 1 ∣ ⋅ ( A − 1 ) − 1 = 1 ∣ A ∣ A (A^*)^{-1}=\dfrac{1}{|A|}A, (A^{-1})^*=|A^{-1}|\cdot (A^{-1})^{-1}=\dfrac{1}{|A|}A (A)1=A1A(A1)=A1(A1)1=A1A ,故 ( A ∗ ) − 1 = ( A − 1 ) ∗ = 1 ∣ A ∣ A (A^*)^{-1}=(A^{-1})^*=\dfrac{1}{|A|}A (A)1=(A1)=A1A.

    • ( A ∗ ) T = ( A T ) ∗ (A^*)^T=(A^T)^* (A)T=(AT)

    • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1,证: ∣ A ⋅ A ∗ ∣ = ∣ ∣ A ∣ ⋅ E n ∣ = ∣ A ∣ n |A\cdot A^*|=||A|\cdot E_n|=|A|^n AA=AEn=An .

    • ( A ∗ ) ∗ = ∣ A ∗ ∣ ⋅ ( A ∗ ) − 1 = ∣ A ∣ n − 2 A ( 2 ≤ n ) (A^*)^*=|A^*|\cdot (A^*)^{-1}=|A|^{n-2}A(2\le n) (A)=A(A)1=An2A(2n)

    • ( A B ) ∗ = B ∗ A ∗ , ( k A ) ∗ = K n − 1 A ∗ ( n > 1 ) (AB)^*=B^*A^*,(kA)^*=K^{n-1}A^*(n>1) (AB)=BA(kA)=Kn1A(n>1)

  • 2.克莱姆法则

  • 3.向量:

    • 向量的内积/点乘(是一个数):
      • a ⃗ ⋅ b ⃗ ( = < a ⃗ , b ⃗ > ) = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ cos ⁡ θ = a x b x + a y b y \vec{a}\cdot\vec{b}(=<\vec{a},\vec{b}>)=|\vec{a}|\cdot|\vec{b}|\cos\theta=a_xb_x+a_yb_y a b (=<a ,b >)=a b cosθ=axbx+ayby
    • 向量的外积/叉乘(是一个向量):
      • a ⃗ × b ⃗ = ∣ i j k a x a y a z b x b y b z ∣ = { ∣ a y a z b y b z ∣ , − ∣ a x a z b x b z ∣ , ∣ a x a y b x b y ∣ } \vec{a}\times\vec{b}=\begin{vmatrix}i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}=\{\begin{vmatrix}a_y & a_z \\ b_y & b_z \end{vmatrix},-\begin{vmatrix}a_x & a_z \\ b_x & b_z \end{vmatrix},\begin{vmatrix}a_x & a_y \\ b_x & b_y \end{vmatrix}\} a ×b =iaxbxjaybykazbz={aybyazbz,axbxazbz,axbxayby}
      • 方向遵循右手螺旋准则,垂直于a,b
      • 长度 ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ sin ⁡ θ |\vec{a}|\cdot|\vec{b}|\sin\theta a b sinθ,表示平行四边形的面积。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值