曲线积分与曲面积分(微积分)

1 第一型曲线积分(对弧长)

一、概念

讨论非均匀的曲线形构件的质量

  • P89 定义1 ∫ L f ( x , y )   d s = lim ⁡ λ → 0 ∑ i = 1 n f ( x i , y i ) Δ s i \int_Lf(x,y)\,ds=\lim\limits_{\lambda\rightarrow 0}\sum\limits_{i = 1}^n f(x_i,y_i)\Delta s_i Lf(x,y)ds=λ0limi=1nf(xi,yi)Δsi,其中 λ = max ⁡ 1 ≤ i ≤ n { Δ s i } \lambda=\max\limits_{1\le i \le n} \{\Delta s_i\} λ=1inmax{Δsi} ( x , y ) (x,y) (x,y)为积分变量, f ( x , y ) f(x,y) f(x,y)为被积函数, L L L积分弧段 d s ds ds为弧长元素。自然的,空间曲线段上有 ∫ Γ f ( x , y , z )   d s = lim ⁡ λ → 0 ∑ i = 1 n f ( x i , y i , z i ) Δ s i \int_{\Gamma}f(x,y,z)\,ds=\lim\limits_{\lambda\rightarrow 0}\sum\limits_{i = 1}^n f(x_i,y_i,z_i)\Delta s_i Γf(x,y,z)ds=λ0limi=1nf(xi,yi,zi)Δsi.
  • 几何意义
    • f ( x , y ) = 1 f(x,y)=1 f(x,y)=1,则表示曲线弧长。
    • f ( x , y ) = ρ ( x , y ) f(x,y)=\rho(x,y) f(x,y)=ρ(x,y),则表示曲线的线密度。
    • f ( x , y ) = z f(x,y)=z f(x,y)=z,则表示以 O x y Oxy Oxy平面为投影, f ( x , y ) f(x,y) f(x,y)为高的柱面面积
  • 可积充分条件:若 f f f在一条分段光滑的曲线 L L L连续,则 f f f L L L上可积。

二、性质

  • 无方向性 ∫ A B ⌢ f ( x , y )   d S = ∫ B A ⌢ f ( x , y )   d S \int_{\overset{\frown}{AB}}f(x,y)\,dS=\int_{\overset{\frown}{BA}}f(x,y)\,dS ABf(x,y)dS=BAf(x,y)dS
  • 线性运算性
  • 区域可加性
  • 单调性

三、计算

  • “一投二代三换”(化为定积分计算):
    • 将平面曲线投影到 x x x轴上的区间 [ a , b ] [a,b] [a,b]
      首 先 , d s = 1 + y ′ 2 ( x )   d x . 因 此 , ∫ L f ( x , y )   d s = ∫ a b f [ x , y ( x ) ] 1 + y ′ 2 ( x )   d x . 首先,{\color{red}ds=\sqrt{1+y'^2(x)}\,dx}. \\ 因此,\color{fuchsia}\int_Lf(x,y)\,ds=\int_a^b f\left[x,y(x)\right]\sqrt{1+y'^2(x)}\,dx. ,ds=1+y2(x) dx.,Lf(x,y)ds=abf[x,y(x)]1+y2(x) dx.
    • 若曲线 L L L用参数方程表示为 x = ϕ ( t ) , y = ψ ( t ) x=\phi(t),y=\psi(t) x=ϕ(t),y=ψ(t)保证上限 β \beta β大于下限 α \alpha α, 保证 ϕ ′ 2 ( t ) + ψ ′ 2 ( t ) > 0 \phi'^2(t)+\psi'^2(t)>0 ϕ2(t)+ψ2(t)>0
      首 先 , d s = d x 2 + d y 2 = ϕ ′ 2 ( t ) + ψ ′ 2 ( t )   d t . 因 此 , ∫ L f ( x , y )   d s = ∫ α β f [ ϕ ( t ) , ψ ( t ) ] ϕ ′ 2 ( t ) + ψ ′ 2 ( t )   d t . 首先,{\color{red}ds=\sqrt{dx^2+dy^2}=\sqrt{\phi'^2(t)+\psi'^2(t)}\,dt}. \\ 因此,\int_Lf(x,y)\,ds=\int_{\alpha}^{\beta}f\left[\phi(t),\psi(t)\right]\sqrt{\phi'^2(t)+\psi'^2(t)}\,dt. ,ds=dx2+dy2 =ϕ2(t)+ψ2(t) dt.,Lf(x,y)ds=αβf[ϕ(t),ψ(t)]ϕ2(t)+ψ2(t) dt.
    • 空间曲线同理:
      ∫ Γ f ( x , y , z )   d s = ∫ α β f [ ϕ ( t ) , ψ ( t ) , ω ( t ) ] ϕ ′ 2 ( t ) + ψ ′ 2 ( t ) + ω ′ 2 ( t )   d t . \int_{\Gamma}f(x,y,z)\,ds=\int_{\alpha}^{\beta}f\left[\phi(t),\psi(t),\omega(t)\right]\sqrt{\phi'^2(t)+\psi'^2(t)+\omega'^2(t)}\,dt. Γf(x,y,z)ds=αβf[ϕ(t),ψ(t),ω(t)]ϕ2(t)+ψ2(t)+ω2(t) dt.
  • 解决实际问题步骤:
    • 写参数方程,确定参数范围
    • 建立曲线积分
    • 化为定积分
    • 计算定积分

2 第二型曲线积分(对坐标)

引入:变力沿曲线所做的功 W = lim ⁡ λ → 0 ∑ i = 1 n F ⃗ ( x i , y i ) ⋅ Δ s ⃗ i = lim ⁡ λ → 0 ∑ i = 1 n ∣ F ( x i , y i ) ∣ cos ⁡ θ i Δ s i = ∫ L ∣ F ( x , y ) ∣ cos ⁡ θ   d s W = \lim\limits_{\lambda\rightarrow 0}\sum\limits_{i = 1}^n \vec F(x_i,y_i)\cdot \Delta \vec s_i = \lim\limits_{\lambda\rightarrow 0}\sum\limits_{i = 1}^n |F(x_i,y_i)|\cos\theta_i \Delta s_i = \int_L |F(x,y)|\cos\theta \,ds W=λ0limi=1nF (xi,yi)Δs i=λ0limi=1nF(xi,yi)cosθiΔsi=LF(x,y)cosθds.

向量分解: W = W x + W y = lim ⁡ λ → 0 ∑ i = 1 n P ( x i , y i ) Δ x i + Q ( x i , y i ) Δ y i W=W_x+W_y=\lim\limits_{\lambda\rightarrow 0}\sum\limits_{i = 1}^n P(x_i,y_i)\Delta x_i + Q(x_i,y_i) \Delta y_i W=Wx+Wy=λ0limi=1nP(xi,yi)Δxi+Q(xi,yi)Δyi.

一、概念

  • 定义: ∫ L P ( x , y )   d x = lim ⁡ λ → 0 ∑ i = 1 n P ( x i , y i ) Δ x i \int_L P(x,y)\,dx = \lim\limits_{\lambda\rightarrow 0}\sum\limits_{i = 1}^n P(x_i,y_i)\Delta x_i LP(x,y)dx=λ0limi=1nP(xi,yi)Δxi 表示函数 P ( x , y ) P(x,y) P(x,y) L L L上对坐标 x x x的曲线积分, ∫ L Q ( x , y )   d y = lim ⁡ λ → 0 ∑ i = 1 n Q ( x i , y i ) Δ y i \int_L Q(x,y)\,dy = \lim\limits_{\lambda\rightarrow 0}\sum\limits_{i = 1}^n Q(x_i,y_i)\Delta y_i LQ(x,y)dy=λ0limi=1nQ(xi,yi)Δyi 表示函数 Q ( x , y ) Q(x,y) Q(x,y) L L L上对坐标 y y y的曲线积分,其中 ( x , y ) (x,y) (x,y)为积分变量, P ( x , y ) P(x,y) P(x,y) Q ( x , y ) Q(x,y) Q(x,y)为被积函数, L L L有向积分弧段
  • 存在条件:当 P , Q P,Q P,Q在光滑曲线 L L L上连续时,第二型曲线积分存在。
  • 组合形式: ∫ L P   d x + Q   d y = ∫ L F ⃗ ⋅   d s ⃗ \int_L P\,dx+Q\,dy=\int_L \vec F\cdot\,d\vec s LPdx+Qdy=LF ds ,其中 F ⃗ = P i ⃗ + Q j ⃗ , d s ⃗ = d x i ⃗ + d y j ⃗ \vec F=P\vec i+Q\vec j,d\vec s=dx\vec i+dy\vec j F =Pi +Qj ,ds =dxi +dyj

二、性质

  • 有方向性 ∫ − L P   d x + Q   d y = − ∫ L P   d x + Q   d y \int_{-L}P\,dx+Q\,dy=-\int_L P\,dx+Q\,dy LPdx+Qdy=LPdx+Qdy.

三、计算

  • “一投二代三换”(化为定积分计算):

    • 将平面曲线投影到 x x x轴上的区间 [ a , b ] [a,b] [a,b]注意下限为起点,上限为终点
      首 先 , d s = ( d x , d y ) = ( 1 , y ′ ( x ) )   d x . 因 此 , ∫ L P ( x , y )   d x + Q ( x , y )   d y = ∫ a b { P ( x , y ( x ) ) + Q ( x , y ( x ) ) y ′ ( x ) }   d x . 首先,{\color{red}ds = (dx,dy) = (1,y'(x))\,dx}. \\ 因此,\color{fuchsia}\int_L P(x,y)\,dx+Q(x,y)\,dy = \int_a^b\{P(x,y(x)) + Q(x,y(x))y'(x)\}\,dx. ,ds=(dx,dy)=(1,y(x))dx.,LP(x,y)dx+Q(x,y)dy=ab{P(x,y(x))+Q(x,y(x))y(x)}dx.
    • 若曲线 L L L用参数方程表示为 x = ϕ ( t ) , y = ψ ( t ) x=\phi(t),y=\psi(t) x=ϕ(t),y=ψ(t)
      ∫ L P ( x , y )   d x + Q ( x , y )   d y = ∫ α β { P [ ϕ ( t ) , ψ ( t ) ] ϕ ′ ( t ) + Q [ ϕ ( t ) , ψ ( t ) ] ψ ′ ( t ) }   d t . \int_L P(x,y)\,dx+Q(x,y)\,dy = \int_{\alpha}^{\beta} \{P[\phi(t),\psi(t)]\phi'(t) + Q[\phi(t),\psi(t)]\psi'(t)\}\,dt. LP(x,y)dx+Q(x,y)dy=αβ{P[ϕ(t),ψ(t)]ϕ(t)+Q[ϕ(t),ψ(t)]ψ(t)}dt.
    • 空间曲线同理:
      ∫ L P ( x , y , z )   d x + Q ( x , y , z )   d y + R ( x , y , z )   d z = ∫ α β { P [ ϕ ( t ) , ψ ( t ) , ω ( t ) ] ϕ ′ ( t ) + Q [ ϕ ( t ) , ψ ( t ) , ω ( t ) ] ψ ′ ( t ) + R [ ϕ ( t ) , ψ ( t ) , ω ( t ) ] ω ′ ( t ) }   d t . \int_L P(x,y,z)\,dx+Q(x,y,z)\,dy+R(x,y,z)\,dz = \\ \int_{\alpha}^{\beta} \{P[\phi(t),\psi(t),\omega(t)]\phi'(t) + Q[\phi(t),\psi(t),\omega(t)]\psi'(t)+R[\phi(t),\psi(t),\omega(t)]\omega'(t)\}\,dt. LP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=αβ{P[ϕ(t),ψ(t),ω(t)]ϕ(t)+Q[ϕ(t),ψ(t),ω(t)]ψ(t)+R[ϕ(t),ψ(t),ω(t)]ω(t)}dt.
  • 两类曲线积分的联系:
    由 于 d x = cos ⁡ α d s , d y = cos ⁡ β d s , d z = cos ⁡ γ d s 因 而 ∫ A B ⌢ P   d x + Q   d y + R   d z = ∫ A B ⌢ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ )   d s 其 中 cos ⁡ α , cos ⁡ β , cos ⁡ γ 是 曲 线 A B ⌢ 上 各 点 处 与 A B ⌢ 同 方 向 切 线 的 方 向 余 弦 由于dx=\cos\alpha ds, dy=\cos\beta ds,dz=\cos\gamma ds \\ 因而\int_{\overset{\frown}{AB}}P\,dx+Q\,dy+R\,dz=\int_{\overset{\frown}{AB}}(P\cos\alpha+Q\cos\beta+R\cos\gamma )\,ds \\ 其中\cos\alpha,\cos\beta,\cos\gamma是曲线\overset{\frown}{AB}上各点处与\overset{\frown}{AB}同方向切线的方向余弦 dx=cosαds,dy=cosβds,dz=cosγdsABPdx+Qdy+Rdz=AB(Pcosα+Qcosβ+Rcosγ)dscosα,cosβ,cosγ线ABAB线

    例: 一 金 属 丝 L 方 程 为 x = e t cos ⁡ t , y = e t sin ⁡ t , z = e t , 0 ≤ t ≤ 1. 各 点 线 密 度 与 该 店 到 原 点 距 离 平 方 成 反 比 , 在 点 ( 1 , 0 , 1 ) 的 线 密 度 为 1. 求 金 属 线 质 量 M \color{blue}一金属丝L方程为x=e^t\cos t,y=e^t\sin t,z=e^t,0\le t\le1.\\\color{blue}各点线密度与该店到原点距离平方成反比,在点(1,0,1)的线密度为1.求金属线质量M Lx=etcost,y=etsint,z=et,0t1.线(101)线1.线M

ρ ( x , y , z ) = 2 x 2 + y 2 + z 2 = e − 2 t . 故 M = ∫ 0 1 ρ ( x , y , z )    d s = ∫ 0 1 e − 2 t e 2 t [ ( cos ⁡ t − sin ⁡ t ) 2 + ( cos ⁡ t + sin ⁡ t ) 2 + 1 2 ]    d t = 3 ∫ 0 1 e − t    d t = 3 ( 1 − e − 1 ) . \rho(x,y,z)=\dfrac{2}{x^2+y^2+z^2}=e^{-2t}.\\ 故M=\int_0^1\rho(x,y,z)\;ds=\int_0^1 e^{-2t}\sqrt{e^{2t}\left[(\cos t-\sin t)^2+(\cos t+\sin t)^2+1^2 \right]}\;dt\\ =\sqrt{3}\int_0^1 e^{-t}\;dt=\sqrt{3}(1-e^{-1}). ρ(x,y,z)=x2+y2+z22=e2t.M=01ρ(x,y,z)ds=01e2te2t[(costsint)2+(cost+sint)2+12] dt=3 01etdt=3 (1e1).

3 格林公式

实质:沟通沿正向边界的第二型曲线积分与二重积分的桥梁

一、定义

∬ D ( ∂ Q ∂ x − ∂ P ∂ y )   d x d y = ∮ L P   d x + Q   d y \color{red}\iint\limits_D(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y})\,dxdy = \oint_L P\,dx+Q\,dy D(xQyP)dxdy=LPdx+Qdy

  • 条件

    1. 闭区域 D D D
    2. P 、 Q P、Q PQ有连续的一阶偏导(首先需有意义)
    3. D D D由分段光滑的曲线 L L L围成
  • 注意:正方向(对外逆时针,对内顺时针)

  • 证明:设 a < b , y 1 ( x ) < y 2 ( x ) , c < d , x 1 ( y ) < x 2 ( y ) a<b,y_1(x)<y_2(x),c<d,x_1(y)<x_2(y) a<b,y1(x)<y2(x),c<d,x1(y)<x2(y)
    在这里插入图片描述

∮ L + P   d x = ∫ a b P ( x , y 1 ( x ) ) + ∫ b a P ( x , y 2 ( x ) ) ,   ∬ D ∂ P ∂ y   d x d y = ∫ a b   d x ∫ y 1 ( x ) y 2 ( x ) ∂ P ∂ y   d y . ∮ L + Q   d y = ∫ c d P ( x 2 ( y ) , y ) + ∫ d c P ( x 1 ( y ) , y ) ,   ∬ D ∂ Q ∂ x   d x d y = ∫ c d   d y ∫ x 1 ( y ) x 2 ( y ) ∂ Q ∂ x   d x . \oint_{L^+} P\,dx = \int_a^b P(x,y_1(x))+\int_b^a P(x,y_2(x)),\ \iint\limits_D\dfrac{\partial P}{\partial y}\,dxdy = \int_a^b\,dx\int_{y_1(x)}^{y_2(x)}\dfrac{\partial P}{\partial y}\,dy.\\ \oint_{L^+} Q\,dy = \int_c^d P(x_2(y),y)+\int_d^c P(x_1(y),y),\ \iint\limits_D\dfrac{\partial Q}{\partial x}\,dxdy = \int_c^d\,dy\int_{x_1(y)}^{x_2(y)}\dfrac{\partial Q}{\partial x}\,dx.\\ L+Pdx=abP(x,y1(x))+baP(x,y2(x)), DyPdxdy=abdxy1(x)y2(x)yPdy.L+Qdy=cdP(x2(y),y)+dcP(x1(y),y), DxQdxdy=cddyx1(y)x2(y)xQdx.

二、应用

  • 1.降次
  • 2.二重积分转为曲线积分(算面积)
    S = ∬ D 1   d x d y = 1 2 ∮ L − y   d x + x   d y = ∮ L x   d y = ∮ L − y   d x S=\iint\limits_{D}1\,dxdy=\dfrac{1}{2}\oint_L-y\,dx+x\,dy=\oint_Lx\,dy=\oint_L-y\,dx S=D1dxdy=21Lydx+xdy=Lxdy=Lydx.
  • 3.曲线积分转为二重积分
    当区域边界与坐标轴平行时,效果更好(与 x x x轴平行 d y = 0 dy=0 dy=0,与 y y y轴平行 d y = 0 dy=0 dy=0
    例: 计 算 ∮ L x   d y − y   d x x 2 + y 2 , 其 中 L 是 不 过 原 点 的 连 续 闭 曲 线 , 方 向 为 逆 时 针 方 向 \color{blue}计算\oint_L\dfrac{x\,dy-y\,dx}{x^2+y^2},其中L是不过原点的连续闭曲线,方向为逆时针方向 Lx2+y2xdyydx,L线(超级大重点题)
    在这里插入图片描述

当 x 2 + y 2 ≠ 0 时 , ∂ Q ∂ x − ∂ P ∂ y = 0 1 ) 当 ( 0 , 0 ) ∉ D 时 , 由 格 林 公 式 ( 有 连 续 的 一 阶 偏 导 , 故 可 用 ) 原 式 = 0 2 ) 当 ( 0 , 0 ) ∈ D 时 , 不 能 直 接 使 用 格 林 公 式 ( P 、 Q 在 D 内 原 点 无 定 义 , 不 满 足 条 件 ) , 于 是 为 利 用 格 林 公 式 , 将 原 点 邻 域 挖 掉 区 域 C ( 设 边 界 为 Γ ) ∴ 0 = ∬ D 1 0   d x d y = ∮ ( L + Γ ) + x   d y − y   d x x 2 + y 2 原 式 = ∮ L + x   d y − y   d x x 2 + y 2 = ∮ Γ + x   d y − y   d x x 2 + y 2 = ∫ 0 2 π r 2 cos ⁡ 2 θ + r 2 sin ⁡ 2 θ r 2   d θ = 2 π . \color{red}当x^2+y^2\ne 0时,\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}=0 \\ 1)当(0,0)\notin D时,由格林公式(有连续的一阶偏导,故可用)原式=0 \\ 2)当(0,0)\in D时,不能直接使用格林公式(P、Q在D内原点无定义,不满足条件),\\ 于是为利用格林公式,将原点邻域挖掉区域C(设边界为\Gamma) \\ \therefore \color{fuchsia}0=\iint\limits_{D_1}0\,dxdy=\oint_{(L+\Gamma)^+}\dfrac{x\,dy-y\,dx}{x^2+y^2} \\ 原式=\oint_{L^+}\dfrac{x\,dy-y\,dx}{x^2+y^2}=\oint_{\Gamma^+}\dfrac{x\,dy-y\,dx}{x^2+y^2}=\int_0^{2\pi}\dfrac{r^2\cos^2\theta+r^2\sin^2\theta}{r^2}\,d\theta=2\pi. x2+y2=0,xQyP=01)(0,0)/D()=02)(0,0)D使(PQD,),,C(Γ)0=D10dxdy=(L+Γ)+x2+y2xdyydx=L+x2+y2xdyydx=Γ+x2+y2xdyydx=02πr2r2cos2θ+r2sin2θdθ=2π.

此题说明:沿任意一条将原点包围在其内部的光滑正向(逆时针)闭曲线的积分都等于沿以原点为圆心的正向圆周的积分.

​ 例: 函 数 u ( x , y ) 在 有 界 闭 区 域 D 上 有 连 续 的 二 阶 偏 导 , L 为 D 光 滑 的 边 界 , 证 明 : ∮ L + ∂ u ∂ n ⃗   d s = ∬ D Δ u   d σ . 其 中 ∂ u ∂ n ⃗ 表 示 函 数 U 沿 L 的 外 法 向 量 的 方 向 导 数 , Δ u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 \color{blue}函数u(x,y)在有界闭区域D上有连续的二阶偏导,L为D光滑的边界,证明:\oint_{L^+}\dfrac{\partial u}{\partial \vec n}\,ds=\iint\limits_{D}\Delta u\,d\sigma.\\\color{blue}其中\dfrac{\partial u}{\partial \vec n}表示函数U沿L的外法向量的方向导数,\Delta u=\dfrac{\partial^2 u}{\partial x^2}+\dfrac{\partial^2 u}{\partial y^2} u(x,y)DLD,:L+n uds=DΔudσ.n uU沿L,Δu=x22u+y22u

在这里插入图片描述

设 t ⃗ 0 = ( cos ⁡ α , cos ⁡ β ) 为 L + 的 单 位 切 向 量 , n ⃗ 0 = ( a , b ) 为 L + 的 外 法 向 量 方 向 的 单 位 向 量 , k ⃗ 为 z 轴 正 方 向 的 单 位 向 量 . 则 n 0 ⋅ t 0 = 0 , n 0 × t 0 = ∣ i j k a b 0 cos ⁡ α cos ⁡ β 0 ∣ = k , 解 出 n ⃗ 0 = ( cos ⁡ β , − cos ⁡ α ) . ∮ L + ( ∂ u ∂ x cos ⁡ β − ∂ u ∂ y cos ⁡ α )   d s = ∮ L + ∂ u ∂ x   d y − ∂ u ∂ y   d x = ∬ D [ ∂ ∂ x ( ∂ u ∂ x ) − ∂ ∂ y ( − ∂ u ∂ y ) ]   d x d y = ∬ D Δ u   d x d y . 设\vec t_0=(\cos\alpha, \cos\beta)为L^+的单位切向量,\vec n_0=(a,b)为L^+的外法向量方向的单位向量,\vec k为z轴正方向的单位向量.\\ 则n_0\cdot t_0=0,n_0\times t_0=\begin{vmatrix}i&j&k\\a&b&0\\\cos\alpha&\cos\beta&0\end{vmatrix}=k,解出\vec n_0=(\cos\beta,-\cos\alpha). \\ \oint_{L^+}\left(\dfrac{\partial u}{\partial x}\cos\beta-\dfrac{\partial u}{\partial y}\cos\alpha\right)\,ds = \oint_{L^+}\dfrac{\partial u}{\partial x}\,dy-\dfrac{\partial u}{\partial y}\,dx \\ ={\color{fuchsia}\iint\limits_{D}\left[\dfrac{\partial}{\partial x}\left(\dfrac{\partial u}{\partial x}\right)-\dfrac{\partial}{\partial y}\left(-\dfrac{\partial u}{\partial y}\right)\right]\,dxdy} = \iint\limits_{D}\Delta u\,dxdy. t 0=(cosα,cosβ)L+,n 0=(a,b)L+,k z.n0t0=0,n0×t0=iacosαjbcosβk00=k,n 0=(cosβ,cosα).L+(xucosβyucosα)ds=L+xudyyudx=D[x(xu)y(yu)]dxdy=DΔudxdy.

三、与路径无关的三个等价条件

  • 1.开区域 D D D内任意光滑闭曲线 L L L的曲线积分 ∮ L P   d x + Q   d y = 0 \oint_L P\,dx+Q\,dy=0 LPdx+Qdy=0.
  • 2.单连通区域(没有洞) D D D内任意两点间光滑曲线 L L L的曲线积分 ∫ L P   d x + Q   d y \int_L P\,dx+Q\,dy LPdx+Qdy满足 ∂ Q ∂ x = ∂ P ∂ y \dfrac{\partial Q}{\partial x}=\dfrac{\partial P}{\partial y} xQ=yP.
  • 3.单连通区域 D D D内函数 P 、 Q P、Q PQ恰是某一函数 u ( x , y ) u(x,y) u(x,y)的全微分即 d u ( x , y ) = P   d x + Q   d y du(x,y)=P\,dx+Q\,dy du(x,y)=Pdx+Qdy.
    注意:曲线积分 ∫ A B ⌢ P   d x + Q   d y \int_{\overset{\frown}{AB}} P\,dx+Q\,dy ABPdx+Qdy与路径无关时, 可记作 ∫ A B P   d x + Q   d y \int_A^B P\,dx+Q\,dy ABPdx+Qdy.(曲线积分转为定积分)。通常进而转换为与坐标轴平行的折线求解。

四、曲线积分基本定理

  • 基本定理:在单连通区域 D D D内函数 P 、 Q P、Q PQ均有连续的一阶偏导,则当 P   d x + Q   d y P\,dx+Q\,dy Pdx+Qdy表示某函数 u u u的全微分时,有
    ∫ A B ⌢ P   d x + Q   d y = ∫ A B   d u = u ( B ) − u ( A ) . \color{red}\int_{\overset{\frown}{AB}}P\,dx+Q\,dy=\int_A^B\,du=u(B)-u(A). ABPdx+Qdy=ABdu=u(B)u(A).
    表明:势场 F F F仅依赖于路径两端点,与两点间路径无关(是保守场)。

  • 求全微分的方法之一:折线法

    例: 求 ( x 4 + 4 x y 3 )   d x + ( 6 x 2 y 2 + 5 y 4 )   d y 的 原 函 数 \color{blue}求(x^4+4xy^3)\,dx+(6x^2y^2+5y^4)\,dy的原函数 (x4+4xy3)dx+(6x2y2+5y4)dy
    首 先 ∂ Q ∂ x = 12 x y 2 = ∂ P ∂ y , 所 以 曲 线 积 分 与 路 径 无 关 , 有 原 函 数 . 取 折 线 积 分 路 径 O ( 0 , 0 ) → A ( x , 0 ) → B ( x , y ) u ( x , y ) = ∫ O B P d x + Q d y = ∫ 0 x x 4   d x + ∫ 0 y ( 6 x 2 y 2 + 5 y 4 )   d y = 1 5 x 5 + 2 x 2 y 3 + y 5 . 首先\dfrac{\partial Q}{\partial x} = 12xy^2 = \dfrac{\partial P}{\partial y},所以曲线积分与路径无关,有原函数. \\ 取折线积分路径O(0,0)\rightarrow A(x,0)\rightarrow B(x,y) \\ u(x,y)=\int_O^BPdx+Qdy=\int_0^xx^4\,dx+\int_0^y(6x^2y^2+5y^4)\,dy={1\over5}x^5+2x^2y^3+y^5. xQ=12xy2=yP,线,.线O(00)A(x,0)B(x,y)u(x,y)=OBPdx+Qdy=0xx4dx+0y(6x2y2+5y4)dy=51x5+2x2y3+y5.

4 第一型曲面积分(对面积)

一、概念

讨论非均匀的曲面形构件的质量

  • P109 定义1 ∬ S f ( x , y , z )   d S = lim ⁡ λ → 0 ∑ i = 1 n f ( x i , y i , z i ) Δ S i \iint\limits_Sf(x,y,z)\,dS=\lim\limits_{\lambda\rightarrow 0}\sum\limits_{i = 1}^n f(x_i,y_i,z_i)\Delta S_i Sf(x,y,z)dS=λ0limi=1nf(xi,yi,zi)ΔSi,其中 Σ \Sigma Σ为积分曲面, f ( x , y , z ) f(x,y,z) f(x,y,z)为被积函数, d S dS dS为面积元素。
  • 几何意义:若 f ( x , y , z ) = ρ ( x , y , z ) f(x,y,z)=\rho(x,y,z) f(x,y,z)=ρ(x,y,z),则曲面形构件的质量 M = ∬ Σ ρ ( x , y , z )   d S M=\iint\limits_{\Sigma}\rho(x,y,z)\,dS M=Σρ(x,y,z)dS

二、性质

  • 线性运算性
  • 区域可加性
  • 单调性

三、计算

  • “一投二代三换”(曲面积分化为二重积分计算):
    • 将积分曲面投影到 O x y Oxy Oxy面上的区域 D x y D_{xy} Dxy
      首 先 , d S = 1 + z x 2 ( x , y ) + z y 2 ( x , y )   d σ . 因 此 , ∬ Σ f ( x , y , z )   d S = ∬ D x y f [ x , y , z ( x , y ) ] 1 + z x 2 ( x , y ) + z y 2 ( x , y )   d x d y . 首先,{\color{red}dS=\sqrt{1+z_x^2(x,y)+z_y^2(x,y)}\,d\sigma}. \\ 因此,\color{fuchsia}\iint\limits_{\Sigma}f(x,y,z)\,dS=\iint\limits_{D_{xy}}f\left[x,y,z(x,y)\right]\sqrt{1+z_x^2(x,y)+z_y^2(x,y)}\,dxdy. ,dS=1+zx2(x,y)+zy2(x,y) dσ.,Σf(x,y,z)dS=Dxyf[x,y,z(x,y)]1+zx2(x,y)+zy2(x,y) dxdy.
    • 投影到 O x z , O y z Oxz,Oyz Oxz,Oyz同理
    • 若曲线 L L L用参数方程表示为 x = x ( u , v ) , y = y ( u , v ) , z = z ( u , v ) x=x(u,v),y=y(u,v),z=z(u,v) x=x(u,v),y=y(u,v),z=z(u,v), :
      首 先 , d S = A 2 + B 2 + C 2   d u d v . 其 中 A = 因 此 , ∬ Σ f ( x , y , z )   d S = ∬ D ∗ f [ x ( u , v ) , y ( u , v ) , z ( u , v ) ] A 2 + B 2 + C 2   d u d v . 首先,{\color{red}dS=\sqrt{A^2+B^2+C^2}\,dudv}. \\ 其中A= 因此,\iint\limits_{\Sigma}f(x,y,z)\,dS=\iint\limits_{D^*}f\left[x(u,v),y(u,v),z(u,v)\right]\sqrt{A^2+B^2+C^2}\,dudv. ,dS=A2+B2+C2 dudv.A=,Σf(x,y,z)dS=Df[x(u,v),y(u,v),z(u,v)]A2+B2+C2 dudv.

5 第二型曲面积分(对坐标)

引入:液体流向问题

一、概念

  • 定义: ∬ Ω f ⃗ ( x , y , z ) n ⃗ ( x , y , z )   d S = lim ⁡ λ → 0 ∑ i = 1 n f ⃗ ( x i , y i , z i ) n ⃗ ( x i , y i , z i ) Δ S i \iint\limits_{\Omega}\vec f(x,y,z)\vec n(x,y,z)\,dS=\lim\limits_{\lambda\rightarrow 0}\sum\limits_{i = 1}^n\vec f(x_i,y_i,z_i)\vec n(x_i,y_i,z_i)\Delta S_i Ωf (x,y,z)n (x,y,z)dS=λ0limi=1nf (xi,yi,zi)n (xi,yi,zi)ΔSi
  • 存在条件:当 P , Q , R P,Q,R P,Q,R在分片光滑的双侧曲面 S S S上有定义且连续时,第二型曲面积分存在。
  • 和第一型曲面积分的关系:
    ∬ Ω f ⃗ ⋅   d S ⃗ = ∬ Ω f ⃗ ⋅ n ⃗   d S = ∬ Ω ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ )   d S \color{fuchsia}\iint\limits_{\Omega}\vec f\cdot\,d\vec S=\iint\limits_{\Omega}\vec f\cdot\vec n\,dS=\iint\limits_{\Omega}(P\cos\alpha+Q\cos\beta+R\cos\gamma)\,dS Ωf dS =Ωf n dS=Ω(Pcosα+Qcosβ+Rcosγ)dS
    其中单位法向量 n ⃗ ( x , y , z ) \vec n(x,y,z) n (x,y,z)的方向余弦为 cos ⁡ α , cos ⁡ β , cos ⁡ γ \cos\alpha,\cos\beta,\cos\gamma cosα,cosβ,cosγ.
    cos ⁡ γ   d S \cos\gamma\,dS cosγdS d S dS dS O x y Oxy Oxy面上的有向投影面积,即 d x d y dxdy dxdy(有正负).表示第二型曲面积分的坐标形式为:
    ∬ Ω f ⃗ ⋅ n ⃗   d S = ∬ Ω P   d y d z + Q   d x d z + R   d x d y \iint\limits_{\Omega}\vec f\cdot\vec n\,dS=\iint\limits_{\Omega}P\,dydz+Q\,dxdz+R\,dxdy Ωf n dS=ΩPdydz+Qdxdz+Rdxdy

二、性质

  • 有方向性 ∬ Ω + f ⃗ ( x , y , z ) n ⃗ ( x , y , z )   d S = − ∬ Ω − f ⃗ ( x , y , z ) n ⃗ ( x , y , z )   d S \iint\limits_{\Omega^+}\vec f(x,y,z)\vec n(x,y,z)\,dS=-\iint\limits_{\Omega^-}\vec f(x,y,z)\vec n(x,y,z)\,dS Ω+f (x,y,z)n (x,y,z)dS=Ωf (x,y,z)n (x,y,z)dS
  • 区域可加性
  • 线性运算性

三、计算

  • 第二型曲面积分 → \rightarrow 第一型曲面积分 → \rightarrow 二重积分( Ω \Omega Ω为曲面积分区域, S S S为投影区域)
    ∬ Ω f ⃗ ⋅   d S ⃗ = ∬ S ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ )   d S \iint\limits_{\Omega}\vec f\cdot\,d\vec S=\iint\limits_S(P\cos\alpha+Q\cos\beta+R\cos\gamma)\,dS Ωf dS =S(Pcosα+Qcosβ+Rcosγ)dS
  • 第二型曲面积分 → \rightarrow 二重积分
    例对于曲面 z = f ( x , y ) z=f(x,y) z=f(x,y),法向量取上侧时取正,下侧取负:
    首 先 , 单 位 法 向 量 n ⃗ ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) = ± 1 1 + f x 2 + f y 2 ( − f x , − f y , 1 ) 且 d S = 1 + f x 2 + f y 2   d σ . 因 此 , ∬ Ω P   d y d z + Q   d x d z + R   d x d y = ± ∬ S [ P ( − f x ) + Q ( − f y ) + R ]   d σ ∬ Ω R   d x d y = ± ∬ S R   d x d y . 首先,单位法向量\vec n(\cos\alpha,\cos\beta,\cos\gamma)=\dfrac{\pm1}{\sqrt{1+f_x^2+f_y^2}}(-f_x,-f_y,1)且dS=\sqrt{1+f_x^2+f_y^2}\,d\sigma.\\ 因此,\color{fuchsia}\iint\limits_{\Omega}P\,dydz+Q\,dxdz+R\,dxdy=\pm\iint\limits_S\left[P(-f_x)+Q(-f_y)+R\right]\,d\sigma \\ \iint\limits_{\Omega}R\,dxdy=\pm\iint\limits_S R\,dxdy. n (cosα,cosβ,cosγ)=1+fx2+fy2 ±1(fx,fy,1)dS=1+fx2+fy2 dσ.ΩPdydz+Qdxdz+Rdxdy=±S[P(fx)+Q(fy)+R]dσΩRdxdy=±SRdxdy.

6 高斯公式

实质:在封闭曲面上的第二型曲面积分与曲面围成空间上三重积分的桥梁

一、定义

∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z )   d V = ∯ S + P   d y d z + Q   d z d x + R   d x d y \color{red}\iiint\limits_{\Omega}(\dfrac{\partial P}{\partial x}+\dfrac{\partial Q}{\partial y}+\dfrac{\partial R}{\partial z})\,dV = \oiint\limits_{S^+} P\,dydz+Q\,dzdx+R\,dxdy Ω(xP+yQ+zR)dV=S+ Pdydz+Qdzdx+Rdxdy

  • 证明:
    ∭ Ω ∂ R ∂ z   d V = ∬ D d σ ∫ f 1 f 2 ∂ R ∂ z   d z = ∬ D R f 2 − R f 1 d σ = − ∬ D R f 1   d x d y + ∬ D R f 2   d x d y = ∬ S 1 + R   d x d y + ∬ S 2 + R   d x d y + ∬ S 3 + R   d x d y ( = 0 ) = ∯ S + R   d x d y \iiint\limits_{\Omega}\dfrac{\partial R}{\partial z}\,dV = \iint\limits_Dd\sigma\int_{f1}^{f2}\dfrac{\partial R}{\partial z}\,dz\\ =\iint\limits_DR_{f_2}-R_{f_1}d\sigma\\ =-\iint\limits_DR_{f_1}\,dxdy+\iint\limits_DR_{f_2}\,dxdy=\iint\limits_{S_1^+}R\,dxdy+\iint\limits_{S_2^+}R\,dxdy+\iint\limits_{S_3^+}R\,dxdy(=0) = \oiint\limits_{S^+}R\,dxdy ΩzRdV=Ddσf1f2zRdz=DRf2Rf1dσ=DRf1dxdy+DRf2dxdy=S1+Rdxdy+S2+Rdxdy+S3+Rdxdy(=0)=S+ Rdxdy
  • 应用:空间域 Ω \Omega Ω的体积 V = ∭ Ω 1   d x d y d z = 1 3 ∯ Ω x   d y d z + y   d z d x + z   d x d y V=\iiint\limits_{\Omega}1\,dxdydz={1\over 3}\oiint\limits_{\Omega} x\,dydz+y\,dzdx+z\,dxdy V=Ω1dxdydz=31Ω xdydz+ydzdx+zdxdy.
  • 散度: d i v F = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z div F=\dfrac{\partial P}{\partial x}+\dfrac{\partial Q}{\partial y}+\dfrac{\partial R}{\partial z} divF=xP+yQ+zR. 通量:曲面积分 ∬ S + F ⃗ ⋅ n ⃗   d S \iint\limits_{S^+}\vec F\cdot\vec n\,dS S+F n dS.
    F F F通过闭曲面 S S S通量为其散度 S S S所围区域上的三重积分
    例:辅导讲义P308 例12.31。。。
    例: 求 向 径 r ⃗ = { x , y , z } 通 过 圆 锥 体 Ω : z = 1 − x 2 + y 2 ( 0 ≤ z ≤ 1 ) 全 表 面 S 外 侧 的 通 量 \color{blue}求向径\vec r=\{x,y,z\}通过圆锥体\Omega:z=1-\sqrt{x^2+y^2}(0\le z\le1)全表面S外侧的通量 r ={x,y,z}Ω:z=1x2+y2 (0z1)S
    ∬ S r ⃗ ⋅ d S = ∭ Ω d i v r ⃗   d V = ∭ Ω ( 1 + 1 + 1 )   d V = π . \iint\limits_{S}\vec r\cdot dS=\iiint\limits_{\Omega}div\vec r\,dV=\iiint\limits_{\Omega}(1+1+1)\,dV=\pi. Sr dS=Ωdivr dV=Ω(1+1+1)dV=π.

7 斯托克斯公式

实质:在空间曲面上的曲面积分(第二型曲面积分)与沿曲面有向边界曲线上的曲线积分(第二型曲线积分)的桥梁

一、定义

∮ L + P   d x + Q   d y + R   d z = ∬ S + ( ∂ R ∂ y − ∂ Q ∂ z )   d y d z + ∬ S + ( ∂ P ∂ z − ∂ R ∂ x )   d z d x + ∬ S + ( ∂ Q ∂ x − ∂ P ∂ y )   d x d y \oint_{L^+} P\,dx+Q\,dy+R\,dz=\iint\limits_{S^+}(\dfrac{\partial R}{\partial y}-\dfrac{\partial Q}{\partial z})\,dydz+\iint\limits_{S^+}(\dfrac{\partial P}{\partial z}-\dfrac{\partial R}{\partial x})\,dzdx+\iint\limits_{S^+}(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y})\,dxdy L+Pdx+Qdy+Rdz=S+(yRzQ)dydz+S+(zPxR)dzdx+S+(xQyP)dxdy

  • 旋度 r o t A = ( ∂ R ∂ y − ∂ Q ∂ z ) i + ( ∂ P ∂ z − ∂ R ∂ x ) j ( ∂ Q ∂ x − ∂ P ∂ y ) k rot A=(\dfrac{\partial R}{\partial y}-\dfrac{\partial Q}{\partial z})i+(\dfrac{\partial P}{\partial z}-\dfrac{\partial R}{\partial x})j(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y})k rotA=(yRzQ)i+(zPxR)j(xQyP)k,其中向量场 A = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k A=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k A=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k.
  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。 极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。 微积分学是微分学和积分学的总称。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 微积分学的建立 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。 牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。 德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。 微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。 不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。 其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。 应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。 直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。 任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西…… 欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。 微积分的基本内容 研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值