第五章 原根

第五章 原根 Primitive Root

5.1 整数的次数(阶)

m ∈ Z + , m > 1 , a ∈ Z , a ≠ ± 1 m\in Z^+,m>1,a\in Z,a\ne \pm 1 mZ+,m>1,aZ,a=±1,若 ( a , m ) = 1 (a,m)=1 (a,m)=1 则在
a , a 2 , a 3 , . . . , a l , . . . , a φ ( m ) , . . . a,a^2,a^3,...,a^l,...,a^{\varphi(m)},... a,a2,a3,...,al,...,aφ(m),...
中讨论。有

  • 定义:设 m > 1 , ( m , a ) = 1 m>1,(m,a)=1 m>1,(m,a)=1,当 l l l 使 a l ≡ 1 ( m o d m ) a^l\equiv 1\pmod m al1(modm) 且对于 ∀ 1 ≤ s ≤ l − 1 \forall 1\le s\le l-1 1sl1,均有 a s ≢ 1 ( m o d m ) a^s\not\equiv 1\pmod m as1(modm)。则称这样的最小的 l ∈ Z + l\in Z^+ lZ+ a a a m m m 的次数(阶)。

  • 定理一:设 a a a m m m 的次数为 l l l ( a , m ) = 1 (a,m)=1 (a,m)=1,若
    a n ≡ 1 ( m o d m ) a^n\equiv 1\pmod m an1(modm)
    l ∣ n l\mid n ln

    • 推论 l ∣ φ ( m ) \color{red}l\mid \varphi(m) lφ(m)
  • 定理二:设 a a a m m m 的次数为 l l l ( a , m ) = 1 (a,m)=1 (a,m)=1,那么
    a 0 = 1 , a , a 2 , . . . , a l − 1 a^0=1,a,a^2,...,a^{l-1} a0=1,a,a2,...,al1
    m m m 两两互不同余

  • 定理三:设 a a a m m m 的次数为 l l l,则对于 λ ∈ Z + \lambda\in Z^+ λZ+ a λ a^{\lambda} aλ m m m 的次数为
    l gcd ⁡ ( λ , l ) \color{red}\dfrac{l}{\gcd(\lambda,l)} gcd(λ,l)l

    • 推论:设 a a a m m m 的次数为 l l l,则对于任意 λ ∈ [ 1 , l ] \lambda\in [1,l] λ[1,l],满足 ( λ , l ) = 1 (\lambda,l)=1 (λ,l)=1,均有 a λ a^{\lambda} aλ m m m 的次数为 l l l
  • 定理四:设 p p p 为一个素数,若存在整数 a a a p p p 的次数为 l l l,则恰好有 φ ( l ) \color{red}\varphi(l) φ(l) 个整数,它们模 p p p 两两互不相同,且对于模 p p p 的次数均为 l l l

  • 定理五:对于任意正整数 l ∣ p − 1 l\mid p-1 lp1,恰有 φ ( l ) \color{red}\varphi(l) φ(l) 个模 p p p 的两两互不同余的整数,它们的每一个模 p p p 的次数为 l l l

5.2 原根

  • 定义:设整数 m > 0 m>0 m>0 ( g , m ) = 1 (g,m)=1 (g,m)=1,若整数 g g g m m m次数为 φ ( m ) \varphi(m) φ(m),则 g g g 叫做 m m m 的一个原根。

    • 性质:模 p p p 的原根一定存在。
  • 定理一:设 ( g , m ) = 1 , m > 1 (g,m)=1,m>1 (g,m)=1,m>1,则 g g g 为模 m m m 的原根
       ⟺    g , g 2 , . . . , g φ ( m ) \iff g,g^2,...,g^{\varphi(m)} g,g2,...,gφ(m)
    构成模 m m m 的一组缩系

  • 定理二:设 m ∈ Z + , m > 1 m\in Z^+,m>1 mZ+,m>1 ,若 m m m 有原根存在,则 m m m 必为一下四种表示之一
    2 , 4 , p l , 2 p l \color{red}2,4,p^l,2p^l 2,4,pl,2pl

  • 定理三:设 m ∈ { 2 , 4 , p l , 2 p l } m\in\{2,4,p^l,2p^l \} m{2,4,pl,2pl} p p p 为奇素数。则当 l ≥ 1 l\ge 1 l1 时,模 m m m 的原根存在。

    • 引理:设 g g g 为模 p p p 的一个原根且满足
      g p − 1 ≢ 1 ( m o d p 2 ) \color{red}g^{p-1}\not\equiv 1\pmod {p^2} gp11(modp2)
      dot ⁡ p ( g p − 1 − 1 ) = 1 \operatorname{dot}_{p}(g^{p-1}-1)=1 dotp(gp11)=1,则对于任意 α ≥ 2 \alpha\ge 2 α2,有
      g φ ( p α − 1 ) ≢ 1 ( m o d p α ) \color{red}g^{\varphi(p^{\alpha-1})}\not\equiv 1\pmod {p^{\alpha}} gφ(pα1)1(modpα)
  • 定理四:设 m m m 有一个原根 g g g,则 m m m 恰有 φ ( φ ( m ) ) \color{red}\varphi(\varphi(m)) φ(φ(m)) 个对模 m m m 不同余的原根,它们由集合
    S = { g t ∣ 1 ≤ t ≤ φ ( m ) , gcd ⁡ ( t , φ ( m ) ) = 1 } \color{red}S=\{g^t\mid 1\le t\le \varphi(m),\gcd(t,\varphi(m))=1 \} S={gt1tφ(m),gcd(t,φ(m))=1}
    给出。

5.3 计算次数的方法

m ∈ Z + m\in Z^+ mZ+,若 ( a , m ) = 1 (a,m)=1 (a,m)=1 a a a 对模数 l l l 的次数为 l l l。因为 l ∣ φ ( m ) l\mid \varphi(m) lφ(m),故显然次数 l l l 可从 d i ∣ φ ( m ) d_i\mid \varphi(m) diφ(m) 中求出。

  • 定理一:记标准分解式 m = p 1 l 1 . . . p s l 1 m=p_1^{l_1}...p_s^{l_1} m=p1l1...psl1,则整数 a a a 对模数 m m m 的次数等于 a a a 对模数 p i l i ( i = 1 , . . . , k ) p_i^{l_i}(i=1,...,k) pili(i=1,...,k) 的诸次数的最小公倍数

  • 定理二:设对于素数 p p p f j f_j fj 表示 a a a 对模数 p j p^j pj 的次数,则有
    f j + 1 = f j    或    f j + 1 = p f j f_{j+1}=f_j\;或\; f_{j+1}=pf_j fj+1=fjfj+1=pfj
    p i ∣ ∣ a f 2 − 1 p^i\mid\mid a^{f_2}-1 piaf21,即 i = ord ⁡ p ( a f 2 − 1 ) i=\operatorname{ord}_p(a^{f_2}-1) i=ordp(af21),进而有
    f j = { f 2 , 若 2 ≤ j ≤ i p j − i f 2 ,    若 i < j f_j=\begin{cases}f_2,\qquad若2\le j\le i\\ p^{j-i}f_2,\;若i<j \end{cases} fj={f2,2jipjif2,i<j

例题 \color{White}\colorbox{Fuchsia}{例题} :设 a = 2 , p = 7 a=2,p=7 a=2,p=7,求 7 7 7 对模数 2 10 2^{10} 210 的次数 f 10 f_{10} f10

解:因为 f 1 = 1 , f 2 = 2 f_1=1,f_2=2 f1=1,f2=2,且 7 2 − 1 = 48 , 2 4 ∣ ∣ 48 7^2-1=48,2^4\mid\mid 48 721=48,2448,故 f 10 = 2 10 − 4 ⋅ 2 = 128 f_{10}=2^{10-4}\cdot 2=128 f10=21042=128

5.4 计算原根的方法

m = 2 , 4 m=2,4 m=2,4 时,显然不需要特定方法(因为很好计算)

( a , m ) = 1 (a,m)=1 (a,m)=1 m = p l m=p^l m=pl 2 p l 2p^l 2pl p p p 是一个奇素数,则判断 a a a m m m 的原根,只需要计算 a t ( m o d m ) a^t\pmod m at(modm),其中 t ∣ φ ( m ) \color{red}t\mid \varphi(m) tφ(m)

  • 定理一:设 m > 2 m>2 m>2 φ ( m ) \varphi(m) φ(m) 的所有不同素因子为 q 1 , q 2 , . . . , q s q_1,q_2,...,q_s q1,q2,...,qs ( a , m ) = 1 (a,m)=1 (a,m)=1,则 a a a m m m 的一个原根
       ⟺    a φ ( m ) q i ≢ 1 ( m o d m ) ( i = 1 , 2 , . . . , s ) \iff a^{\frac{\varphi(m)}{q_i}}\not\equiv 1\pmod m\quad (i=1,2,...,s) aqiφ(m)1(modm)(i=1,2,...,s)
    例题 \color{White}\colorbox{Fuchsia}{例题} :证明 12 12 12 41 41 41 的一个原根

    解:设 m = 41 , φ ( m ) = φ ( 41 ) = 40 = 2 3 ⋅ 5 m=41,\varphi(m)=\varphi(41)=40=2^3\cdot 5 m=41,φ(m)=φ(41)=40=235. 故 q 1 = 2 , q 2 = 5 q_1=2,q_2=5 q1=2,q2=5

    于是 1 2 20 ≡ 40 ≢ 1 ( m o d 41 ) , 1 2 8 ≡ 18 ≢ 1 ( m o d 41 ) 12^{20}\equiv 40\not \equiv 1\pmod {41},12^{8}\equiv 18\not \equiv 1\pmod {41} 1220401(mod41),128181(mod41)。因此 12 12 12 41 41 41 的一个原根。

  • 定理二:设 a a a 对模数为奇素数 p p p 的次数是 d    ( d < p − 1 ) d\;(d<p-1) d(d<p1),则
    a λ , λ = 1 , 2 , . . . , d a^{\lambda},\qquad \lambda=1,2,...,d aλ,λ=1,2,...,d
    都不是 p p p 的原根。

    例题 \color{White}\colorbox{Fuchsia}{例题} :求出 41 41 41 的所有原根

    解:

    因为 2 2 2 41 41 41 的次数为 20 20 20,故在 1 , 2 , . . . , 40 1,2,...,40 1,2,...,40 中除去 2 1 % 41 , 2 2 % 41 , . . . , 2 20 % 41 2^1\%41,2^2\%41,...,2^{20}\%41 21%41,22%41,...,220%41

    因为 3 3 3 41 41 41 的次数为 8 8 8,故在剩余数字中除去 3 1 % 41 , 3 2 % 41 , . . . , 3 8 % 41 3^1\%41,3^2\%41,...,3^{8}\%41 31%41,32%41,...,38%41 等数字。其中 1 , 9 , 32 , 40 1,9,32,40 1,9,32,40 被重复去除。

    此时剩余 40 − 20 − 8 + 4 = 16 40-20-8+4=16 40208+4=16 个数字。由于 φ ( φ ( 41 ) ) = φ ( 40 ) = 16 \varphi(\varphi(41))=\varphi(40)=16 φ(φ(41))=φ(40)=16 (由5.2定理四)故剩余 16 16 16 个数字都是 41 41 41 的原根。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值