全板子题G划 P2

【模板】最近公共祖先(LCA)

水温逐渐升高
#include<bits/stdc++.h>
using namespace std;
const int N = 5e5 + 10;
int n,m,s;
vector<int> ed[N];
int dp[N][21],dep[N];

void dfs(int x,int fa){
	for(int i = 1;i <= 20;i++)
		dp[x][i] = dp[dp[x][i - 1]][i - 1];
	for(auto y:ed[x]){
		if(y == fa) continue;
		dp[y][0] = x;
		dep[y] = dep[x] + 1;
		dfs(y,x);
	}
}

int lca(int x,int y){
	if(dep[y] > dep[x]) swap(x,y);
	for(int i = 20;i >= 0;i--){
		if(dep[dp[x][i]] >= dep[y]) x = dp[x][i];
	}
	if(x == y) return x;
	for(int i = 20;i >= 0;i--){
		if(dp[x][i] != dp[y][i]) x = dp[x][i],y = dp[y][i];
	}
	return dp[x][0];
}

int main(){
    ios::sync_with_stdio(false);//写了using namespace std;
	cin >> n >> m >> s;
	for(int i = 1;i <= n - 1;i++){
		int u,v;cin >> u >> v;
		ed[u].push_back(v);
		ed[v].push_back(u);
	}
	dp[s][0] = s;
	dep[s] = 1;
	dfs(s,s);
	for(int i = 1;i <= m;i++){
		int x,y;cin >> x >> y;
		cout << lca(x,y) << endl;
	}
}

【模板】线段树 1

我什么时候写过这么全的线段树?我都不记得
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson (x << 1)
#define rson (x << 1 | 1)
const int MAXN = 5e5 + 10;
int a[MAXN];
class tree{
	public:
	ll sum[MAXN*4];//代表的和
	ll ma[MAXN*4];//代表的最大值
	ll mi[MAXN*4];//代表的最小值
	bool fadd[MAXN*4];//是否启用标签
	ll ladd[MAXN*4];//加法标签
	bool fturn[MAXN*4];
	ll lturn[MAXN*4];//变换标签
	ll l[MAXN*4],r[MAXN*4];
	void build(int _l,int _r,int x)
	{
		l[x] = _l,r[x] = _r;
		if(_l == _r)
		{
			sum[x] = a[_l];
			ma[x] = a[_l];
			mi[x] = a[_l];
		}
		else
		{
			int mid = (_l+_r)/2;
			build(_l,mid,lson);
			build(mid + 1,_r,rson);
			update(x);
		}
	}
	void add(int _l,int _r,int x,int v){
		if(_l <= l[x] && _r >= r[x])
		{
			ladd[x] += v;
			fadd[x] = 1;
			ma[x] += v;
			mi[x] += v;
			sum[x] += v*(r[x] - l[x] + 1);
		}
		else
		{
			down(x);
			int mid = (l[x] + r[x]) / 2;
			if(_l <= mid)
				add(_l,_r,lson,v);
			if(_r >= mid + 1)
				add(_l,_r,rson,v);
			update(x);
		}
	}
	void turn(int _l,int _r,int x,int v){
		if(_l <= l[x] && _r >= r[x])
		{
			lturn[x] = v;
			fturn[x] = 1;
			fadd[x] = 0;
			ladd[x] = 0;
			ma[x] = v;
			mi[x] = v;
			sum[x] = v * (r[x] - l[x] + 1);
		}
		else
		{
			down(x);
			int mid = (l[x] + r[x]) / 2;
			if(_l <= mid)
				turn(_l,_r,lson,v);
			if(_r >= mid + 1)
				turn(_l,_r,rson,v);
			update(x);
		}
	}
	void update(int x){
		ma[x] = max(ma[lson],ma[rson]);
		mi[x] = min(mi[lson],mi[rson]);
		sum[x] = sum[lson] + sum[rson];
	}
	void down(int x){
		if(fturn[x])
		{
			fturn[lson] = fturn[rson] = 1;
			lturn[lson] = lturn[rson] = lturn[x];
			ma[lson] = ma[rson] = lturn[x];
			mi[lson] = mi[rson] = lturn[x];
			sum[lson] = lturn[x]*(r[lson]-l[lson]+1);
			sum[rson] = lturn[x]*(r[rson]-l[rson]+1);
			fadd[lson] = fadd[rson] = 0;
			fturn[x] = 0;
		}
		if(fadd[x])
		{
			fadd[lson] = fadd[rson] = 1;
			ma[lson] += ladd[x];
			ma[rson] += ladd[x];
			mi[lson] += ladd[x];
			mi[rson] += ladd[x];
			sum[lson] += ladd[x]*(r[lson]-l[lson]+1);
			sum[rson] += ladd[x]*(r[rson]-l[rson]+1);
			ladd[lson] += ladd[x];
			ladd[rson] += ladd[x];
			fadd[lson] = fadd[rson] = 1;
			fadd[x] = 0;
			ladd[x] = 0;
		}
	}
	ll findma(int _l,int _r,int x)
	{
		if(_l <= l[x] && _r >= r[x])
			return ma[x];
		else
		{
			down(x);
			int mid = (l[x] + r[x]) / 2;
			ll ma = 0;
			if(_l <= mid)
				ma = findma(_l,_r,lson);
			if(_r >= mid + 1)
				ma = max(ma,findma(_l,_r,rson));
			update(x);
			return ma;
		}
	}
	ll findmi(int _l,int _r,int x)
	{
		if(_l <= l[x] && _r >= r[x])
			return mi[x];
		else
		{
			down(x);
			int mid = (l[x] + r[x]) / 2;
			ll mi = 1e9 + 10;
			if(_l <= mid)
				mi = findmi(_l,_r,lson);
			if(_r >= mid + 1)
				mi = min(mi,findmi(_l,_r,rson));
			update(x);
			return mi;
		}
	}
	ll findsum(int _l,int _r,int x)
	{
		if(_l <= l[x] && _r >= r[x])
			return sum[x];
		else
		{
			down(x);
			int mid = (l[x] + r[x]) / 2;
			ll sum = 0;
			if(_l <= mid)
				sum += findsum(_l,_r,lson);
			if(_r >= mid + 1)
				sum += findsum(_l,_r,rson);
			return sum;
			update(x);
		}
	}
}tr;

int main()
{
	int n,q;cin >> n >> q;
	for(int i = 1;i <= n;i++)
		cin >> a[i];
	tr.build(1,n,1);
	for(int i = 1;i <= q;i++)
	{
		int op;cin >> op;
		if(op == 1)
		{
			int _l,_r,x;cin >> _l >> _r >> x;
			tr.add(_l,_r,1,x);
		}
		else if(op == 2)
		{
			int _l,_r;cin >> _l >> _r;
			cout << tr.findsum(_l,_r,1) << endl;
		}
		else
		{
			int _l,_r;cin >> _l >> _r;
			if(op == 3)
				cout << tr.findsum(_l,_r,1) << endl;
			else if(op == 4)
				cout << tr.findma(_l,_r,1) << endl;
			else
				cout << tr.findmi(_l,_r,1) << endl;
		}
	}
}

【模板】KMP 字符串匹配

#include<bits/stdc++.h>
using namespace std;

const int N = 1e6 + 10;
int nex[N];

void fnex(string s){
	nex[0] = -1;
	int n = s.size(),ptop = -1,i = 0;
	while(i < n){
		if(ptop == -1 || s[i] == s[ptop])
			nex[++i] = ++ptop;
		else
			ptop = nex[ptop];
	}
}

int main(){
	string s1,s2;cin >> s1 >> s2;
	fnex(s2);
	int n = s1.size(),m = s2.size();
	int i = 0,pos = 0;
	while(i < n){
		if(pos == m){
			cout << i - m + 1 << endl;
			pos = nex[pos];
		}else if(pos == -1 || s2[pos] == s1[i])
			pos++,i++;
		else
			pos = nex[pos];
	}
	if(pos == m)
	    cout << i - m + 1 << endl;
	for(int i = 1;i <= m;i++)
		cout << nex[i] << ' ';
}

【模板】矩阵加速(数列)

结合矩阵快速幂

[ a b c ] ∗ [ t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 ] = [ t 1 ∗ a + t 4 ∗ b + t 7 ∗ c t 2 ∗ a + t 5 ∗ b + t 8 ∗ c t 3 ∗ a + t 6 ∗ b + t 9 ∗ c ] \left[\begin{matrix} a&b&c \end{matrix}\right] *\left[\begin{matrix}t_1 &t_2&t_3\\t_4&t_5&t_6\\t_7&t_8&t_9\end{matrix}\right]= \left[\begin{matrix}t_1*a+t_4*b+t_7*c &t_2*a+t_5*b+t_8*c&t_3*a+t_6*b+t_9*c\end{matrix}\right] [abc] t1t4t7t2t5t8t3t6t9 =[t1a+t4b+t7ct2a+t5b+t8ct3a+t6b+t9c]

因此可以令 t 4 , t 8 , t 3 , t 9 t4,t8,t3,t9 t4,t8,t3,t9为1从而得到

[ a b c ] ∗ [ 0 0 1 1 0 0 0 1 1 ] = [ b c a + c ] \left[\begin{matrix} a&b&c \end{matrix}\right] *\left[\begin{matrix}0 &0&1\\1&0&0\\0&1&1\end{matrix}\right]= \left[\begin{matrix}b &c&a+c\end{matrix}\right] [abc] 010001101 =[bca+c]

#include<bits/stdc++.h>
using namespace std;

#define ll long long
const int N = 4,mod = 1e9 + 7;
struct jz{
    ll a[N][N];
    jz(){memset(a,0,sizeof(a));}//构造
    jz(bool f){memset(a,0,sizeof(a));//单位矩阵
    for(int i = 1;i <= 3;i++)
        a[i][i] = 1;
    }//构造单位矩阵
    jz operator*(const jz &other)const{
        jz ans;
        for(int i = 1;i <= 3;i++)
            for(int j = 1;j <= 3;j++)
                for(int k = 1;k <= 3;k++)
                    ans.a[i][j] = (ans.a[i][j] + a[i][k]*other.a[k][j]) % mod;
       	return ans;
    }
};

jz jzfpow(jz a,ll n){
	jz ans(true);
    while(n){
        if(n&1) ans = (ans*a);
        n >>= 1;
        a=a*a;
    }
    return ans;
}

int main(){
	jz tem;
	tem.a[1][3] = tem.a[2][1] = tem.a[3][2] = tem.a[3][3] = 1;
	int t;cin >> t;
	while(t--){
		int k;cin >> k;
		if(k <= 3)
			cout << 1 << endl;
		else{
			jz no = jzfpow(tem,k - 2);
			cout << (no.a[1][1] + no.a[1][2] + no.a[1][3]) % mod << endl;
		}
	}
}
引用\[1\]:Dijkstra算法是一种用于解决单源最短路径问算法。它通过不断更新起始点到其他点的最短距离来找到最短路径。\[1\]引用\[2\]:在稀疏图中,节点数较多时,朴素的Dijkstra算法可能会超时。为了解决这个问,堆优化版的Dijkstra算法应运而生。\[2\]引用\[3\]:Dijkstra算法的实现通常使用邻接链表来存储边和权值。算法的核心思想是通过优先队列来选择当前距离起始点最近的节点,并更新其后继节点的最短距离。\[3\] 问: Dijkstra算法是用来解决什么问的?它的实现原理是什么? 回答: Dijkstra算法是用来解决单源最短路径问算法,即找到起始点到其他点的最短路径。它的实现原理是通过不断更新起始点到其他点的最短距离来找到最短路径。在稀疏图中,节点数较多时,可以使用堆优化版的Dijkstra算法来提高效率。该算法使用邻接链表来存储边和权值,并通过优先队列来选择当前距离起始点最近的节点,并更新其后继节点的最短距离。 #### 引用[.reference_title] - *1* *2* *3* [Dijkstra学习笔记(模板+acwing上的)](https://blog.csdn.net/weixin_51368613/article/details/123114128)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值