火车进出栈问题

一个栈的进栈序列为 1,2,3...n,有多少种不同的出栈序列呢?

首先假设 F(n) 为序列数量为 n 的出栈序列情况

假定最后出栈的元素为 k ,则 k取不同的值的情况是相互独立的,也就是求出每种 k 最后的出栈情况后可以用加法原理,由于 k  最后出栈,则在 k 入栈之前所有比他小的都出栈了,这里的情况为 F(k-1),所有比 k 大的元素都在 k 之前出栈,为 F(n-k)种情况,两种出栈是相互独立的,所以最后出栈元素为 k 的所有出栈序列情况为 F(k-1)*F(n-k)

那么对于所有可能的最后出栈的元素,k=1,...,n , 所有的可能序列为 F(n)=F(0)*F(n-1)+F(1)*F(n-2)+F(2)*F(n-3)+...+F(n-1)*F(0)

令,F(0)=1,F(1)=1

#include <iostream>
using namespace std;

int main(){
	int n =5;
	int result[n+1];
	result[0]=1;
	result[1]=1;
	for(int i = 2; i<n+1; i++){
		int mid = 0;
		for(int j =0;j<i;j++ ){
			mid += result[j]*result[i-j-1];
		}
		result[i]=mid;
	}
	cout<<result[n];
	return 0;
}


阅读更多
个人分类: C++ 数据结构
上一篇GPU 高性能编程 CUDA : 纹理内存
下一篇GPU 高性能编程 CUDA :原子性
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭