论文:Deeplab_v4

摘要:
1.使用artous卷积,在不增加参数的情况下增加 the field of view of filters。
2.提出ASPP,在多尺度上分割物体
3.impore the localization of object boundaries ,通过结合DCNN和probabilistic graphical.

DCNN应用于语义分割有三个困难:
1. 降低特征的分辨率
2. 多尺寸目标的存在
3. invariance 降低 localization 准确率
第一个困难,移除了DCNN最后几层max pooling 层的下采样操作,并且对之后所有的卷基层upsample the filters.
使用artous convolution recover了full resolution feature maps.
第二个困难,通常是对图片进行多尺度变换,但是这样会增加计算负荷,使用artous spatial pyramid pooling(ASPP).
第三个困难,采用skip-layers方法也可以,但是我们使用CRF,使用fully-connected CRF,可以取得fine edge detials.

整个model
这里写图片描述
将VGG-16 or ResNet-101对于分类任务的模型做一些改变
1. 将全连接层变成卷积层
2. 通过atrous convolution 提高feature resolution
3. 之后employ 双线性差值上采样到原始图片的resolution,之后输入到CRF

artous convolution
这里写图片描述
如图上面是普通的卷积操作,输入是 3,padding=1,经过kernel=3,stride=1 的卷积核操作后输出 3。
下面是artous卷积操作,输入是 5 ,padding =2 ,经过kernel =3 ,stride=1,rate =2 的 artous卷积操作输出 5。
artous卷积操作相当于 upsample 原来的卷积,中间用 0 值代替,虽然filter的size变大了,但是非零值的个数没有变,计算量还是相同的。
可以使用atrous convolution 在 a chain of layers 中,可以获得high resolution.
例如,在VGG-16的网络中,最后一层池化层或者降低resolution的池化层,将其stride设定为1,避免信号抽取,对之后的所有的卷积层都是用r=2的atrous convolution.在‘优雅’的池化后接artous convolution 可以保证对应的感受野和之前的VGG-16网路的感受野相同。有助于fine-tune.但是这样的方法太 costly. 我们使用atrous convolution 将特征图的密度增大4倍
(???),
之后使用双线性差值增大到八倍。
artous convolution 将kernel的size 从 k*k 扩展到 k+(k-1)(r-1),并没有增加额外的参数或者计算。

使用两种方法来解决 scale variability (目标尺寸不一,有大有小)
第一种是标准的 multiscale processing.提取多层feature map,rescale 到原图尺寸然后融合他们
第二中就是ASPP. 一种基于R-CNN的spatial pyramid pooling method.
这里写图片描述

Structured Prediction with Fully-Connected CRF for Accurate Boundary Recovery
有多层max pooling 层的深度模型被证明对分类有用,但是 increased invariance 和 顶层节点比较大的receptive fields只可以获得模糊的 response.
之前的工作在两方面解决localization 问题。
第一种是利用多层卷积层的信息
第二种是应用 super-pixel representation.(????)
我们采用的方法是CRF
传统的CRF是local-range CRFs,用来smooth noise segmentation map。这个和我们的目的相反,DCNN输出的socre map 已经十分平滑,像素具有同质化的结果。我们需要 detail local structure 而不是smooth 它。所以我们使用 fully-connected CRFs.
这里写图片描述
全连接条件随机场的能量函数如上图所示。
第一项是这里写图片描述表示把像素 i,分成label i 的能量,第二项是描述像素点与像素点之间的关系,鼓励相似像素分配相同的标签,而相差较大的像素分配不同标签,而这个“距离”的定义与颜色值和实际相对距离有关。
这里写图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值