基于 caffe2 及 detectron 的 segment for every thing 的训练

本文详细记录了基于Caffe2和Detectron进行语义分割训练的过程,包括Caffe2的编译问题解决、COCO和Cityscapes数据集的使用、Detectron的安装调试,以及Nuclei数据的转换和自定义数据集的适应。通过转换模型和调整配置文件,实现了从COCO预训练模型到Cityscapes的微调。
摘要由CSDN通过智能技术生成

1.编译caffe2过程:

$: cd build & cmake ..

$: make install   

 

2.存在的问题

1)

测试 detectron 出错:No module named past.builtins

测试 caffe2 时出错:python -c 'from caffe2.python import core'

原因:future模块下载不成功

2)

只在caffe根目录下可以import caffe2

解决:将 caffe2/bulid 加到PYTHONPATH

 

3 使用官网的教程重新编译caffe2

运行 cmake .. 时出现错误(warning 可以不管):

string does not recognize sub-command APPEND

解决:将 cmake 的版本升级到3.12

  

cmake .. 成功

make install 成功

但是在python 中 import caffe2.python.core时报错,会在之前的bulid的下找python 及一些文件

解决方法:删掉之前caffe2的bulid 文件。

 

之后报错找不到 libcaffe2.so 文件

解决:将/pytorch/build 加到pythonpath 中

 

Caffe2安装成功

Detectron根据facebook的官网安装,不要根据论文下面的步骤安装。

安装好module后,python找不到路径

在代码中加 sys.path.insert() 解决

 

找不到networkx模块,在import networkx模块,把networkx的上级目录加到sys.path中去。

找不到 core 模块,在import core 模块前,将core上级目录加到sys.path中,注意在train_net.py和test_net.py的文件中加的都是seg_for_every_thing/lib/下的core模块,不是detectron/detectron下的模块

找不到 utils下的cython_bbox和cython_nms模块,发现文件夹下有他们的 .pyx文件,(所以python不可以直接调用.pyx文件吗),将detectron/detectron下两个模块的 .so文件复制过来即可。

Yaml的版本应该为 3.12,太高或者太低都会出错。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值