算法 动态规划 01背包问题


允接上一文章内容:
算法 动态规划: link.

问题分析

在这里插入图片描述
按照普通思维,首先想到应该为贪心算法,也就是计算每个物品重量价值比,将性价比高的物品装入背包,但是这并不是该问题的最优解,因为物品不是可分割的,不能按照重量价值比进行选择

这道问题的最优解应该通过动态规划求解,那么其递归方程式为:
在这里插入图片描述
在这里f(i,j),记为当背包容量为 j,现有 i 物品可拿,所能装进背包的最大价值
在这里插入图片描述
再者我们举例说明,假设背包总容量为8,现在有四件物品,其重量,价值分别为:

重量价值
23
34
45
58

在这里插入图片描述

首先我们是一个 f(4,8),即当容量为8,有4件物品可拿,所能装进背包的最大价值,接着第二步,选择对第四件物品拿与不拿,继而得到②③,f(3,3)+8,即容量为3,有 3 件物品可拿的最大价值加上 8(第四件物品的价值),或者 f(3,8),容量 8,有 3 件物品可拿的最大价值

随着我们的不断细分,最终得到最大值为12,也就是拿走第二件与第四件物品,对于上面的方式,无论是从后往前拿还是从前往后拿都是相同的

那么我们再看上面的递归方程式就很明了了
在这里插入图片描述

代码实现

从前往后拿,递归实现

int Knapsack(vector<int>& w, vector<int>& v, int i, int j, int n)
{
	if (i == n) //只有一个物品
	{
		return j >= w[i] ? v[i] : 0;
	}
	else
	{
		if (j < w[i])  //背包容量不足
		{
			return Knapsack(w, v, i + 1, j, n);
		}
		else
		{
			int maxv1 = Knapsack(w, v, i + 1, j, n);               //不装该物品
			int maxv2 = Knapsack(w, v, i + 1, j - w[i], n) + v[i]; //装该物品
			return maxv1 > maxv2 ? maxv1 : maxv2;
		}
	}
}

int main()
{
	const int n = 5;   //物品数量
	const int c = 10;  //背包容量
	vector<int> w = { 0,2,2,6,6,4 }; //重量
	vector<int> v = { 0,6,3,5,4,6 }; //价值

	int maxv = Knapsack(w, v, 1, c, n);
	                        //i  j
	cout << maxv << endl;
	return 0;
}

非递归实现

void print_vect(const vector<vector<int>>& m)
{
	for (int i = 1; i < m.size(); ++i)
	{
		for (int j = 1; j < m[i].size(); ++j)
		{
			printf("%4d", m[i][j]);
		}
		printf("\n");
	}
	printf("\n");
}
int Knapsack2(vector<int>& w, vector<int>& v, int n, int c, vector<vector<int>>& m)
{
	if (n == 0) return 0;
	for (int j = 0; j <= c; ++j)  //填充最后一行
	{
		m[n][j] = j >= w[n] ? v[n] : 0;
	}
	print_vect(m);
	for (int i = n - 1; i >= 1; --i)
	{
		for (int j = 1; j <= c; ++j)
		{
			if (j >= w[i])
			{
				m[i][j] = max(m[i + 1][j], m[i + 1][j - w[i]] + v[i]);
				//通过容量与价值进行判断
			}
			else
			{
				m[i][j] = m[i - 1][j];
			}
		}
		print_vect(m);
	}
}
int main()
{
	const int n = 5;   //物品数量
	const int c = 10;  //背包容量
	vector<int> w = { 0,2,2,6,6,4 }; //重量
	vector<int> v = { 0,6,3,5,4,6 }; //价值

	vector<vector<int>> m(n + 1, vector<int>(c + 1, 0)); 

	Knapsack2(w, v, n, c, m);
	
	return 0;
}
return 0;
}

在这里插入图片描述

在非递归实现中,我们首先传入了一个表格,其格式如下:
在这里插入图片描述
进入函数第一步,对最后一行进行填充,接下来自下向上每一行进行填充
在这里插入图片描述
m[i][j] = max(m[i + 1][j], m[i + 1][j - w[i]] + v[i]);
在填充过程中,例如黄色位置:j >= w[i],但是通过价值比较,4<6所以依然填入的是6,一直到 9 位置,10>6 则在此填入10
在这里插入图片描述

非递归实现,自上向下填充

void print_vect(const vector<vector<int>>& m)
{
	for (int i = 1; i < m.size(); ++i)
	{
		for (int j = 1; j < m[i].size(); ++j)
		{
			printf("%4d", m[i][j]);
		}
		printf("\n");
	}
	printf("\n");
}
void Knapsack3(vector<int>& w, vector<int>& v, int n, int c, vector<vector<int>>& m)
{
	for (int i = 1; i <= n; ++i) //行
	{
		for (int j = 1; j <= c; ++j) //列
		{
			if (j < w[i])
			{
				m[i][j] = m[i - 1][j]; //拷贝上面的
			}
			else
			{
				m[i][j] = std::max(m[i - 1][j], m[i - 1][j - w[i]] + v[i]);
				//判断放与不放的最优解
			}
		}
		print_vect(m);
	}
}

int main()
{
	const int n = 5;   //物品数量
	const int c = 10;  //背包容量
	vector<int> w = { 0,2,2,6,6,4 }; //重量
	vector<int> v = { 0,6,3,5,4,6 }; //价值

	vector<vector<int>> m(n + 1, vector<int>(c + 1, 0)); 

	Knapsack3(w, v, n, c, m);
	
	return 0;
}

在这里插入图片描述

最后的代码是,通过上述表中的变化,对每个物品加上bool值来确定是否取走了该物品

void backx(vector<int>& w, vector<vector<int>>& m, int n, int c,vector<bool>& x)
{
	for (int i = n; i >= 1; --i)
	{
		if (m[i][c] != m[i - 1][c]) //该物品放入了背包
		{
			x[i] = true;
			c = c - w[i];
		}
	}
}
int main()
{
	const int n = 5;   //物品数量
	const int c = 10;  //背包容量
	vector<int> w = { 0,2,2,6,6,4 }; //重量
	vector<int> v = { 0,6,3,5,4,6 }; //价值
	vector<vector<int>> m(n + 1, vector<int>(c + 1, 0)); 
	vector<bool> X(n + 1,false);

	Knapsack3(w, v, n, c, m);
	backx(w, m, n, c, X);
	
	for (int i = 1;i<=n;++i)
	{
		if (X[i])
		{
			cout << i << endl;
		}
	}
	return 0;
}

在这里插入图片描述

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值