人工智能机器人部分知识点概括

本文探讨了人工智能的不同分支,如弱人工智能、强人工智能和三大学派(符号主义、连接主义和行为主义),介绍了数据挖掘工具Weka,以及频繁模式、关联规则和贝叶斯网络等关键概念。此外,文章还涵盖了神经网络、深度学习、机器学习算法和技术细节,如卷积神经网络和生成对抗网络的使用。
摘要由CSDN通过智能技术生成

人工智能 : 是让机器去学习人类的行动 、 思维等能力 , 从而拓展人类自身能力的
一门学科。
弱人工智能:没有自我意识,不具备推理能力
强人工智能:具有独立的自我意识,具备真正的推理能力
超强人工智能 : 具备人所有的本能和创造力 , 具有自己的价值观 、 世界观 , 几乎
在所有领域都超越人类
三大学派:
① 符号主义 (逻辑主义或计算机学派 ):原理主要为物理符号系统假设和有限合理
性原理。
② 连接主义 (联结主义或仿生学派或生理学派 ):原理主要为神经网络及神经网络
间的机制与学习算法。连接主义取名来自网络拓扑学。
③ 行为主义 (进化主义或控制伦学派 ):原理主要为感知 -动作型控制系统。
区别 : 符号主义和行为主义在很多方面是相同 , 课解释性强 ; 连接主义由于是基
于神经网络 , 因此课解释性比较差 , 但其无需要大量的作业知识 , 就可以通过大
量数据找出其中的规律。
Weka 是集数据预处理、学习算法 (分类、回归、聚类、关联分析等 )和评估方法
等为一体的综合性数据挖掘工具。
数据类型: numeric( 数值型 ):整数 (integer) 或实数 (real)
nominal( 标称型 ):只能取预定义值列表中的一个
string( 字符串 ):字符列表
date( 日期型 ):默认格式为 “ YYY-MM-DD HH:MM:SS ”
离散数学是研究:离散的结构和相互之间的广西为主要目标 (例如:自然数、整
数、真假值、有限个结点等 ),而离散性也是计算机科学的显著特点。
逻辑学是一门研究思维形式及思维规律的科学。
逻辑是所有数学的基础
逻辑分为二类:
-辩证逻辑:是研究事物发展的客观规律
-形式逻辑:是研究思维的概念、判断和推理的问题
用数学方法来研究推理的规律称为数理逻辑或符号逻辑
数理逻辑分为四大分支:证明伦、模型伦、递归伦、公理集合伦
以下主要介绍属于四大分支的共同基础 -- 古典数理逻辑 (命题逻辑和量词逻辑 )
命题 :是一个或真或假的陈述句,但不能既真又假 .为真,用 T表示,为假用 F
表示 .
命题已不能分割为更简单的句子了,称为原子命题或者简单命题 .用小写字 母
p,q,r … 表示简单命题,称为命题符号化 .
如 p:3 是素数、 q: 雪是黑色的 .:其真值是确定的,因此又称为命题常项或者命
题常元 .
X>5 :其中含有变元,其真值可以变化,称为命题变项或命题变元 .
涉及命题的逻辑领域称为命题演算或命题逻辑 .由古希腊哲学家亚里斯多德系统
的创建的 .
复合命题由已有的多个命题用联结词或称逻辑运算符组合而来 .

联结词包括:
┐ :否定运算、非运算
⋀ :合取词 (“ 合取 ” 、 “ 积 ” 、 “ 与 ” 运算 )
V: 析取词 (或运算 )
区分 “ 可兼或 ” 与 “ 不可兼或 (异或,排斥或 )”
“ 异或 ” 用 “▽” 表示
集合类型的 4种基本操作,交集 (&) 、并集 (|) 、差集 (-) 、补集 (^)
原命题 ⟺ 逆反命题、逆命题 ⟺ 反命题
命题联结词在使用中的优先级:
(1) 先括号内,后括号外
(2) 运算联结词的优先次序为: ┐ A V → ⟺ (由高到低 )
(3) 联结词按从左到右的次序进行运算,并可把括号省去
命题联结词小结:
(1) 五个联结词的含义与日常生活中的联结词的含义大致相同。
(2) “ 或 ” 可分为 “ 可兼或 ” (V) 和 “ 异或 ” (▽ ) (不可兼或 )
(3) 除 “┐” 为一元运算外,其余四个均为二元运算。
频繁模式:数据集中经常出现的模式 (一组项、序列、子结构等 )
首先由 by Agrawal,Imielinski, and Swami[AIS93] 提出频繁项集和关联规则挖

动机:查找数据中的固有规律性
为什么频繁模式挖掘是重要的 ?
① 频繁模式:数据集的固有和重要属性;
② 许多基本数据挖掘任务的基础
关联 、 相关和因果关系分析 ; 顺序 、 结构 (例如 , 子图 )模式 ; 时空 、 多媒体 、 时
间序列和流数据中的模式分析 ; 分类 : 判别式 、 频繁模式分析 ; 聚类分析 : 基于
频繁模式的聚类 ;数据仓库 :冰山多维数据集和多维数据集渐变 ;语义数据压缩 :
簇束;广泛的应用程序
基本概念:频繁模式:
1、项集:一组或多项
2、 k项集 x={x1, …… ,Xk}
3、 (绝对 )支持度或支持计数:项集 x的频率或发生次数
4、 (相对 )支持度, s是包含 x 的事务的比例 (即,事务包含 x的概率 )
5、项集 X为频繁,如果 X 的支持度不小于 minsup 阈值
基本概念:关联规则
查找所有规则 X→ Y, 具有最小支持度和信任度
1、支持度,概率 s, 事务包含 XUY
2、信任度,条件概率 c, 具有 X的事务也包含 Y
闭合模式和最大模式:
1、长模式包含子模式的组合数
2、解决方案:挖掘关闭模式和最大模式
3、 项集 X是闭的当且仅当 X频繁 , 并且不存在真超级模式 YDX, 具有与 X相同的
支持度
4、项集 X为最大模式当且仅当 X频繁且不存在频繁的超级模式 Y⊇ X

5、闭合模式是频繁模式的无损压缩
6、归约模式和规则的数量
关联与相关:基本概念与方法
一、 可扩展的频繁项集挖掘方法
1、 Apriori 先验:候选生成和测试方法
2、提高效率 Apriori 先验
3、 FPGrowth: 频繁模式增长方法
4、 ECLAT: 使用垂直数据格式的频繁模式挖掘
二、向下闭集属性和可扩展的挖掘方法
向下闭集频繁模式的属性:频繁项集的任何子集必须频繁
可伸缩的挖掘方法 : 三个主要方法 : Apriori 、 Freq. pattern growth 、 Vertical
data format approach
三、 Apriori: 候选生成 &测试方法
Apriori 修剪原则:如果存在任意不频繁的项集,则剪枝,不应生成 /测试其超

方法:最初,扫描 DB 一次,以获得频繁的 1项集;从候选长度为 k项集,生成
长度 k+1 频繁项集;针对 DB 测试候选;无法生成频繁或候选集时终止
贝叶斯网络是一种概率网络 ,是基于概率推理的图形化网络 ,而贝叶斯公式则是
这个概率网络的基础。贝叶斯网络又称为信度网络 ,是贝叶斯方法的扩展,是目
前不确定知识表达和推理领域最有效的理论模型之一。
贝叶斯规则规定:
如果用语言来表示,这个公式变为:
神经元是构成神经网络的基础单元。
人工智能领域 : M-P 神经元模型 , 在这个模型中 , 神经元模型接收神经网络的输
入或者来自其他神经元传递的输入信号,这些输入信号通过加权输入到模型中 。
神经元介绍:
激活函数 f表示了神经元被激活的难易程度 ,激活函数在神经元模型中起着类似
开关的作用。常见的激活函数有:阶跃函数, sigmoid 函数, tanh 函数, rel u
函数。

感知机 : 感知机是最早的神经网络的一种 , 它具有较为简单的结构 , 具有一定的
表示能力 。 感知机由两层神经元组成 , 分别为输入层和输出层 。 输入层负责接收
来自模型外部的输入,输出层由 “ M-P ” 神经单元组成。
感知机计算表达式:
感知机处理逻辑运算问题:与、或、非
神经网络的基本结构 : 前馈神经网络具有 “ 输入层 -隐藏层 -输出层 ” 三层 , 是神
经网络的基础结构。这种多层网络结构解决了异或问题。
神经网络的基本结构 :神经网络具有层级结构 ,函数 fi(x),fz(x), 和 f3(x) 分别
代表了每一层的函数表达式 ,通常用链式结构来表示神经网络的运算 ,这个三层
神经网络的计算公式为 f(x)= f₃ (f2(fi(x))) 。神经网络的层数即为神经网络
的深度。(如下图)
其它类型的神经结构:
神经网络的学习过程分为正向传播和反向传播两个过程。
正向传播 :在这个过程中 ,我们根据输入的样本和神经网络的初始参数计算模型
输出值 y与真实值 y之间的损失值 L。
反向传播 :将误差逆向传播至隐层神经元 ,根据隐层神经元的误差对模型参数进

行调整。
标准梯度下降算法:梯度下降算法根据所有数据的损失函数之和更新参数。
对于参数 w, 其梯度为
mini-batch 下降是在大规模数据上训练大型线性模型的主要方法。
机器学习 ≈ 构建一个映射函数
深度学习:语音识别、图像识别、棋艺对决、机器翻译
神经元在结构上由细胞体、树突、轴突和突触四部分组成。
单个的神经元模型并没有学习能力,只能完成固定逻辑的判定。
人工神经网络 (ANN) 是一种算法结构,使得机器能够学习一切,从语音命令、播
放列表到音乐创作和图像识别。
通过反馈大量的标签数据,可以帮助它学习如何解读数据
人工神经网络主要由大量的神经元以及它们之间的有向连接构成。
神经元的激活规则 :主要是指神经元输入到输出之间的映射关系 ,一般为非线性
函数。
网络的拓扑结构:不同神经元之间的连接关系。
学习算法:通过训练数据来学习参数。
感知机是 1957 年 , 由 Rosenblatt 提出 , 是神经网络和支持向量机的基础 。 感知
机是二分类的线性模型 , 其输入是实例的特征向量 , 输出的是事例的类别 , 分别
是 +1 和 -1, 属于判别模型。
两层神经网络 (多层感知器 ):正向传播、反向传播

多层神经网络 (深度学习 ): 首次提出了 “ 深度信念网络 ” 的概念 。 与传统的训练
方式不同 , “ 深度信念网络 ” 有一个 “ 预训练 ” 的过程 , 这可以方便的让神经网
络中的权值找到一个接近最优解的值 , 之后再使用 “ 微调 ” 技术来对整个网络进
行优化训练。
传统学习:人工特征工程 +分类器
深度学习:自动学习多尺度的特征表示
深度学习如何进行训练 : 1. 预测模型 — 神经网络 ; 2. 误差计算 — 交叉熵损失 ; 3.
步骤 3: 学习模式 — 随机梯度下降
过拟合问题往往是由于训练数据少和噪声等原因造成的。
卷积神经网络 : CNN 人工神经网络的一种 , 已成为当前语音分析和图像识别领域
的研究热点 。它的权值共享网络结构使之更类似于生物神经网络 ,降低了网络模
型的复杂度 ,减少了权值的数量 。该优点在网络的输入是多维图像时表现的更为
明显 ,使图像可以直接作为网络的输入 ,避免了传统识别算法中复杂的特征提取
和数据重建过程。
卷积对图像是加权平均;卷积是对图像局部区域的运算
池化层:平均池化和最大池化
池化也叫下采样 ; 池化减少了图像的计算 ; 池化增加了表达能力池 ; 池化消除了
过拟合
生成对抗网络 (GAN) 主要由两部分组成:生成器神经网络、鉴别器神经网络
TF-IDF :用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要
程度 。字词的重要性随着它在文件中出现的次数成正比增加 ,但同时会随着它在
语料库中出现的频率成反比下降。
TF :词频,指的是某一个给定的词语在该文件中出现的频率
IDF :倒文档词频,是一个词语普遍重要性的度量,可以由总文件数目除以包含
该词语之文件的数目,再将得到的商取对数得到。
LDA 针对主题、文档进行计算
离散表示的问题:
1. 不能展示词与词之间的关系 ;2. 各种度量都不合适 ;3. 词表维度随着语料库增
长膨胀; 4. 特征空间非常大,发生维数灾难; 5. 数据稀疏问题
分布式表示:

1. 将词表示成一个 k维的连续的稠密向量 ,又称词向量 ;2. 通过词之间的 “ 距离 ”
来判断它们之间的语义相似度 ;3. 词向量能够包含更多信息 ,并且每一维都有特
定的含义,被表示成稠密、实值、低维向量
深度学习在 NLP 的文本分类任务模型结构有三种: CNN 、 RNN 、 CLSTM
LDA 是自然语言处理; LSTM 、 CNN 、矩阵适合 NLP
CPU 的控制比较简单; CPU 的计算单元少
GPU 的缓存较少; GPU 的计算单元多
静态计算图是在编译时构建计算图,计算图构建好之后在程序运行时不能改变 。
动态计算图是在程序运行时动态构建。
静态计算图在构建时可以进行优化,并行能力强,但灵活性比较低。
动态计算图则不容易优化 , 当不同输入的网络结构不一致时 , 难以并行计算 , 但
是灵活性比较高。
判别函数 (Discriminantfunction) 是指直接对样本进行分类的准则函数 ,也称为
判决函数或决策函数。
分段线性逼近是避免非线性的可分问题中 “ 维数灾难 ” 产生的一种重要的方法 ,
利用分段线性判别函数来代替非线性判别函数,从而来完成分类。
几种常见的分段线性判别函数:
1. 以距离为基准确定线性判别函数 (这种分类器也称为线性距离分类器 )
2. 一般分段线性判别函数
先验概率、条件概率密度:记为 p(X|w) 、后验概率:记为 P(w|X) 的概率(可以
由贝叶斯公式求得,也可以直接当作分类判据)
全概率公式: p(x)= ip(X| wi)p( wi)
贝叶斯公式: p( wi|X)= p(X| wi)p( wi)
ip(X| wi)p( wi)
参数估计法的两种方法:极大似然估计和贝叶斯估计
最大似然估计通常用于被估计参数确定但未知的情况
贝叶斯估计则通常用于被估计参数本身具有某种分布的随机变量的情况
非参数估计法的基本思想 :某一区域所包含的数据越多 ,那么他的密度函数就越
大。
V是区域 R的体积 ,X是区域 R中的点 ,则点 X在 R处的概率密度函数可近似为 :

X点概率密度估计:
落入该超立方体的样本数为
常用的窗函数:
1) 方窗函数:
2) 正态窗函数:
分类和预测是预测问题的两种主要类型。
分类主要是预测分类标号 (离散属性 ), 而预测主要是建立连续值函数模型,给定
自变量,计算对应的因变量的值。
常用的分类与预测算法 : 回归分析 、 决策树 、 随机森林 、 贝叶斯网经 、 支持向量

决策树学习是归纳推理算法 。它是一种逼近离散函数的方法 ,且对噪声数据有很
好的健壮性。
基本决策树算法就是一个贪心算法 。它采用自上而下 、分而制之的递归方式来构
造一个决策树
决策树是一种自顶向下增长树的贪婪算法 ,在每个结点选取能最好地分类样例的
属性。
“ 信息增益 ” 用于衡量属性的价值。
信息熵 (香农 ):熵是一种度量信息增益的指标,它描述了样本的纯度。
决策树注意点 :(1) 避免过度拟合 , 应该适度剪枝 ; (2) 连续值的离散化 ; (3) 处理
缺失值的方法:最常见值、按概率分配; (4) 处理权重不同的属性
决策树常用实现算法: CART 、 ID3 、 ASSISTANT 、 C4.5
ID3 决策树算法只能处理离散属性 , 对于连续型的属性 , 在分类前需要对其进行
离散化。
贝叶斯网络结构学习有多种不同的方式, Weka 将结构学习划分
为如下四种类型:
第一类,局部评分度量
第二类,条件独立测试
第三类,全局评分度量
第四类,固定结构

  • 21
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值