机器人学重点知识点总结

这篇博客概述了机器人学中的关键知识点,包括坐标转换与DH参数、雅克比矩阵、机械臂的正向与逆向动力学、运动轨迹生成和轨迹跟踪控制。DH参数简化了三维空间坐标转换的复杂性,雅克比矩阵用于关节空间和笛卡尔空间的转换,逆向动力学解决了从关节力矩到角度加速度的计算,而正向动力学则用于仿真机械臂运动。此外,文章介绍了S型曲线作为运动轨迹生成的简单方案,并提出了基于逆向动力学的控制方法来实现轨迹跟踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇博客主要用来记录一下现代机器人学里面比较基础也比较重要的一些知识点,所有内容均仅仅记录是什么而不写为什么,因为虽然是基础,但机器人学本身就是一个高度交叉科目,需要很多前置知识堆砌,这里不方便一一解释,但懂得自然懂,不懂的稍微补一下相关知识问题也不大。

坐标转换与机械臂运动学

坐标转换可以说是机器人学的地基,也是重中之重,后面很多轨迹生成方法和控制方案都没有一个标准,那些实际上也都是围绕坐标转换来建立的。说白了整个机器人运动学就是不停地坐标转换,或者将其他诸如理论力学的科目与坐标转换结合起来变来变去。但是在机器人学里有自己的一套描述坐标转换的方式,不同于飞行器和航天飞行器还有计算机视觉里面的坐标变换。
在其他地方都有的欧拉角变换、轴-角和四元数这些这里就不写了,这里直接上机器人学里最伟大的发明——DH(Denavit-Hartenberg)参数法变换。

Denavit-Hartenberg参数(也称为DH参数)是与特定约定相关联的四个参数,用于将参考系附加到空间运动链或机器人操纵器的链接上。DH参数是雅克·丹纳维特(Jacques Denavit)和理查德·哈腾贝格(Richard Hartenberg)在1955年发表的,用来标准化空间链接的坐标系。理查德·保罗(Richard Paul)在1981年证明了其在机器人系统运动学分析中的价值。尽管已经开发了许多用于连接参考框架的约定,但Denavit-Hartenberg约定仍然是迄今为止最简洁的方法。

为什么DH参数如此牛逼,做过安装矩阵或者一些空间转换的都知道,三维空间任意两点的转换是有六个自由度的,但是丹纳维特和哈腾贝格两位大佬通过对链式结构特定的建系方法,将六个自由度减少到四个自由度,别小看这减少的两个自由度,这将导致很多无法实现的计算量真正得以实现,大大降低了对链式结构的解算难度。

说了这么多废话,直接上DH参数下的变化矩阵:
在这里插入图片描述
四个参数分别为:

ai(蓝色),αi(绿色),di(紫色),θi(红色)。

ai = 沿Xi轴,从Zi移动到Zi+1的距离
αi = 沿Xi轴,从Zi旋转到Zi+1的角度
di = 沿Xi轴,从Xi-1移动到Xi的距离
θi = 绕Zi轴,从Xi-1旋转到Xi的角度

建系原则:

选取Zi轴与第i个旋转轴重合,Xi轴垂直于Zi轴于Zi+1轴所在的平面,指向Zi+1轴,θi 与αi取右手定则为正方向,Yi轴根据Xi和Zi轴取右手定则决定。ai的长度为Zi到Zi+1的最短距离,也就是沿着Xi的这根线被Zi和Zi+1截取的长度。

如图所示:
在这里插入图片描述
在4X4矩阵里面的最后一行是没有意义的,补上的两行,很多地方也把转换矩阵写成是一个3X4的矩阵,这都没什么太大问题。左上角3X3是方位角转换矩阵ÿ

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值