力扣题64最小路径和

这篇博客介绍了一个使用动态规划求解二维网格中从左上角到右下角的最小路径和的问题。给定一个非负整数网格,每次只能向下或向右移动,目标是找到总和最小的路径。示例展示了如何应用动态规划算法来解决这个问题,并给出了具体的代码实现。
摘要由CSDN通过智能技术生成

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:

 

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

1.动态规划思想。

class Solution {
    public int minPathSum(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m][n];//动态数组保存每个位置的最小路径和
        dp[0][0] = grid[0][0];
        for(int i = 1;i < m;i++){//第一列的最小路径
            dp[i][0] = dp[i-1][0] + grid[i][0];
        }

        for(int i = 1;i < n;i++){//第一行的最小路径
            dp[0][i] = dp[0][i-1] + grid[0][i];
        }

        for(int i = 1;i < m;i++){
            for(int j = 1;j < n;j++){
                dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1]) + grid[i][j];//当前位置的值加上上侧和右侧中的较小值
            }
        }
        return dp[m-1][n-1];
    }
}

题源:力扣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值