FLANN和SURF搭配动态匹配特征点

本文介绍了如何利用FLANN(Fast Library for Approximate Nearest Neighbors)和SURF(Speeded Up Robust Features)进行特征点匹配。通过FLANN的预处理建立索引树,可以提高匹配速度,而SURF则用于提取图像的特征。尽管使用knnMatch找到每个特征的K近邻匹配在效率上仍存在不足,导致帧率较低。
摘要由CSDN通过智能技术生成

特征匹配的结果会得到两个特征集合的对应关系列表。第一组特征集被称为训练集,第二组被称为查询集。FLANN在调用匹配函数之前,为了提高匹配速度,训练一个匹配器。训练阶段是为了优化cv::FlannBasedMatcher的性能。train类将会建立特征集的索引树。
而对于暴力匹配,train类不需要做什么,因为没有预处理。
FLANN和SURF搭配匹配特征点
knnMatch()找每个特征的K近邻匹配
效率不够高,帧率很低。参考《opencv3编程入门》

#include<opencv2/opencv.hpp>
#include<opencv2/features2d/features2d.hpp>
#include<opencv2/xfeatures2d/nonfree.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<iostream>
using namespace std;
using namespace cv;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值