程序员的数学应用地图

 

程序员应该怎么学数学?
首先我们来看最常用的数据结构和编程语句,我想你对它们应该非常熟悉。在我眼里,这些基础的内容,同样富含了数学思维。例如,数组和链表就体现了迭代和递归的思想,判断语句就是使用了逻辑(布尔)代数。

对于架构在这些数据结构和编程语句之上的算法(为了将这些算法和机器学习的算法区分,我称其为通用算法),除了迭代和递归,也体现了排列、组合和动态规划等思想。

对于机器学习的算法而言,我们更需要理解概率统计和线性代数的核心思想,包括什么是概率、贝叶斯定理、数据的统计分布、向量、矩阵、线性方程等等。

整个专栏我基本上都是从数学的角度出发,逐步推进到这些知识在计算机中的应用。不过在绘制这张应用地图的时候,我特意反其道而行之,从计算机编程的角度出发,为你展示程序员应该如何看待编程中的数学知识。

我觉得在开始学习之前,这个地图会给你一个大体的认识,告诉你计算机领域常用的数学思想有哪些。这时,你也许会产生一些疑惑,同时你可以带着自己的思考和问题去逐篇学习。等你学完整个专栏之后,再回头来看看这个地图,应该会有更深的感触。我希望这种双向打通,能够进一步加强你的学习体验。

 

作为转行的从业者来说,当程序员是没什么问题,但能否写出逻辑严密的高质量代码,就是另一说了。数学基础的好坏,会直接决定一个程序员的发展潜力,这一点,做搜索,游戏, 安全,算法,人工智能的程序员一定深有体会。

 

往大了说,数学是一种思维模式,考验的是一个人归纳、总结和抽象的能力,这种能力在程序员的世界就等同于解决问题的能力,可以定义一个程序员的优秀与平庸。往小了说,不管是数据结构与算法,还是程序设计,很多底层原理和编程技巧都源自数学,比如,你熟悉的分页功能,用的就是余数的思想在大数据和智能化的时代,学好数学更是门槛本身。

 

所以,很多大公司招人时都会优先考虑数学专业的毕业生。数学基础好,编程就更容易上手。早几年,Google在地铁出站口投放的招聘广告就是一道数学题,正确解答才能进入下一轮测试,整个测试过程如同一个数学迷宫,直到你成为Google的一员。

 

黄申,目前在 LinkedIn 从事数据科学的工作,主要负责全球领英的搜索引擎优化,算法和数据架构的搭建。2006年,博士毕业于上海交通大学计算机科学与工程专业,接下来十几年时间里,先后在微软亚洲研究院、IBM研究院、eBay中国研发中心做机器学习方向的研究工作,还负责过大润发飞牛网和1号店这两家互联网公司的核心搜索和推荐项目,在《程序员的数学基础课》中,所有内容我都会从基本的概念入手,结合工作中的实际案例,精讲那些程序员真正用得上的数学知识。

 


 

他在极客时间的专栏《程序员的数学基础课》已经上线,专栏中他以编程的视角,结合自己p十多年的学术经验和工业实践,通过“知识、应用、知识”的讲解路线,总结出一套为程序员量身定制的数学学习方法和知识体系。

 


 

在专栏课程中,所有内容我都会从基本的概念入手,结合工作中的实际案例,精讲那些程序员真正用得上的数学知识。

 

1、基础思想篇。我梳理了编程中最常用的数学概念和思想,比如余数、迭代、排列、组合等,由浅入深精讲数据结构与数学的关系。帮你彻底掌握这些最基础、核心的数学知识,也让你明白数学对编程和算法究竟意味着什么。

 

2、概率统计篇。以概率统计中最核心的贝叶斯公式为圆心,向上讲解随机变量、概率分布这些基础概念,向下讲解朴素贝叶斯,并分析它们在生活和编程中的实际应用。让你真正理解概率统计的本质,跨过概念和应用之间的鸿沟。

 

3、线性代数篇。从线性代数中最核心的概念向量、矩阵、线性方程入手,逐步入分析这些概念是如何与计算机融会贯通,解决实际问题的。比如,线性代数究竟是在讲什么?怎样让计算机理解现实世界?如何过滤冗余的新闻?让你不再害怕新技术中的“旧知识”。

 

4、综合实战篇。将通过缓存系统、搜索引擎、推荐系统中的实际应用,串讲前面讲到的数学知识和概念,帮你加深对知识的理解,学会用数学思维来分析并解决问题,让其成为你的基础能力。

 

 

这样的学习路径,既能让你巩固基础知识,又可以深入理解这些内容对计算机编程和算法,究竟意味着什么

 

我有充足的信心,通过学习这个专栏,你会从更深的层次理解数学,让其内化为你的基础能力,在分析问题时追本溯源,快、准、稳地找到解决方案。这样,今后在面对系统框架设计、性能优化、准确率提升等难题时,你会从更高更广的角度出发去思考问题,而不只是以“熟练工”的视角增删改查。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于像和语音识别、自然语言处理、医学像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如像。它们使用卷积层来提取像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值